## Relations and Functions

Computer Mathematics I

Jiraporn Pooksook<br>Department of Electrical and Computer Engineering<br>Naresuan University

## ORDERED PAIRS

An ordered pair is written as $(a, b)$ where $a$ and $b$ are called the components of the ordered pair $(a, b)$.

- The ordered pair $(a, b)$ is different from the set $a, b$.
- Unlike sets, the ordered pair( $a, b$ ) is not the same as $(b, a)$.
- Two ordered pair( $\mathrm{a}, \mathrm{b}$ ) and ( $\mathrm{c}, \mathrm{d}$ ) are equal only when $\mathrm{a}=\mathrm{c}$ and $\mathrm{b}=\mathrm{d}$.


## RELATIONS

The Cartesian product of two sets $A, B$ denoted by $A \times B$, is the set of all ordered pairs $(a, b)$ with $a \in A, b \in B$.
Example:
$\{1,2\} \times\{3\}=\{(1,3),(2,3)\}$
A binary relation on two sets $A, B$ is a subset of $A \times B$.
Example:
$\{(1, b),(1, c),(3, d),(9, d)\}$ is a binary relation on $\{1,3,9\}$ and $\{b, c, d\}$. $\{(\mathrm{n}, \mathrm{m}): \mathrm{n}, \mathrm{m} \in \mathbb{N}$ and $\mathrm{n}<\mathrm{m}\}$ is a binary relation on $\mathbb{N} \times \mathbb{N}$ An ordered $\mathbf{n}$-tuple is written as $\left(a_{1}, \ldots, a_{n}\right)$ where $a_{i}$ is the Ith component of $\left(a_{1}, \ldots, a_{n}\right)$.
The $\mathbf{n}$-fold Cartesian product of the set $A_{1}, \ldots, A_{n}$, denoted by $A_{1} \times \ldots \times A_{n}$ is the set of all ordered n-tuples with $a_{i} \in A_{i}$ for $\mathrm{i}=1, \ldots, \mathrm{n}$.
An n-ary relation on sets $A_{1}, \ldots, A_{n}$ is a subset of $A_{1} \times \ldots \times A_{n}$.

## FUNCTIONS

A function from a set A to a set B, denoted $\mathrm{f}: A \rightarrow B$ is a binary relation $R$ on $A$ and $B$ where for each element $a \in A$, there is exactly one ordered pair in R with first component a.
Example: let $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{3,4\}$
$R_{1}=\{(1,3),(2,3)\}$
$R_{2}=\{(1,3),(2,4)\}$
are functions.
But $R_{3}=\{(1,3)\}$ is not a function.

## Functions

A function $\mathrm{f}: A \rightarrow B$, we call A the domain of f and B is the codomain of f .
If $a$ is any element of A we write $f(a)$ for that element $b$ of $B$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{f}$.
$f(a)$ is called the image of a under $f$.
The range of $f$ is the image of its domain, denoted by

$$
\mathrm{f}(\mathrm{~A})=\{\mathrm{b} \mid \text { there is } \mathrm{a} \text { in } \mathrm{A} \text { such that } \mathrm{b}=\mathrm{f}(\mathrm{a})\}
$$

For $A^{\prime} \subseteq A, \mathrm{f}\left(A^{\prime}\right)=\left\{\mathrm{f}(\mathrm{a}): \mathrm{a} \in A^{\prime}\right\}$ is called the image of $A^{\prime}$ under f .
Example of functions:
The integer addition(+) is a function from $\mathbb{N} \times \mathbb{N}$ to $\mathbb{N}$.

## FUNCTIONS

A function $\mathrm{f}: A \rightarrow B$ is one-to-one if for any two distinct elements $a, a^{\prime} \in \mathrm{A}, f(a) \neq f\left(a^{\prime}\right)$

A function $\mathrm{f}: A \rightarrow B$ is onto $B$ if each element of $B$ is the image under $f$ of some element of $A$.

A function $\mathrm{f} A \rightarrow B$ is a bijection between A and B if it is both one-to-one and onto $B$.

Example: let $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{3,4\}$ $R_{1}=\{(1,3),(2,4)\}$ is one-to-one and onto $B$, hence $R_{1}$ is bijective $R_{2}=\{(1,3),(2,3)\}$ is neither one-to-one nor onto B.

## INVERSE OF A FUNCTION

The inverse of a binary relation $R \subseteq A \times B$, denoted
$R^{-1} \subseteq B \times A$ is the relation $\{(\mathrm{b}, \mathrm{a}):(\mathrm{a}, \mathrm{b}) \in \mathrm{R}\}$.
For example, let $R_{2}=\{(1,3),(2,3)\}$ then $R_{2}^{-1}=\{(3,1),(3,2)\}$.
The inverse of a function need not be a function.
For example, $R_{2}=\{(1,3),(2,3)\}$ is a function but $R_{2}^{-1}=\{(3,1),(3,2)\}$ is not a function.
A function $\mathrm{f}: A \rightarrow B$ may fail to have an inverse if there is some element $b \in B$ such that $f(a) \neq b$ for all $a \in A$.
$f^{-1}(f(a))=a$ for each $a \in A$ and $f\left(f^{-1}(b)\right)=b$ for each $b \in B$.

## Compositions

For binary relations $Q \subseteq A \times B$ and $R \subseteq B \times C$, the composition $Q \circ R$ is defined by

$$
Q \circ R=\{(\mathrm{a}, \mathrm{c}): \exists b \in \mathrm{~B} \text { such that }(\mathrm{a}, \mathrm{~b}) \in \mathrm{Q} \text { and }(\mathrm{b}, \mathrm{c}) \in \mathrm{R}\}
$$

The composition of two functions $\mathrm{f}: A \rightarrow B$ and $\mathrm{g}: B \rightarrow C$ is a function $h$ from A to C such that $\mathrm{h}(\mathrm{a})=\mathrm{g}(\mathrm{f}(\mathrm{a}))$ for each $a \in A$.

Example:
Let $R_{1}=\{(1, \mathrm{a}),(2, \mathrm{a})\}$ and $R_{2}=\{(\mathrm{a}, 3),(\mathrm{b}, 4)\}$
$R_{1} \circ R_{2}=\{(1,3),(2,3)\}$

## EXERCISES

Let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{d}),(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{a})\}$
What is $R \circ R$ ?
What is $R^{-1}$ ?
Is $R, R \circ R$, or $R^{-1}$ a function ?

