Relations and Functions Computer Mathematics I

Jiraporn Pooksook Department of Electrical and Computer Engineering Naresuan University

< □ > < @ > < E > < E > E のQ@

ORDERED PAIRS

An **ordered pair** is written as (a,b) where a and b are called the components of the ordered pair(a,b).

- ► The ordered pair(a,b) is different from the set a,b.
- ► Unlike sets, the ordered pair(a,b) is not the same as (b,a).
- Two ordered pair(a,b) and (c,d) are equal only when a=c and b=d.

Relations

The **Cartesian product** of two sets A,B denoted by $A \times B$, is the set of all ordered pairs(a,b) with $a \in A$, $b \in B$. Example:

 $\{1,2\} \times \{3\} = \{(1,3),(2,3)\}$

A **binary relation** on two sets A,B is a subset of $A \times B$. Example:

{(1,b),(1,c),(3,d),(9,d)} is a binary relation on {1,3,9} and {b,c,d}. {(n,m): n,m $\in \mathbb{N}$ and n<m } is a binary relation on $\mathbb{N} \times \mathbb{N}$ An **ordered n-tuple** is written as (a_1, \ldots, a_n) where a_i is the Ith component of (a_1, \ldots, a_n) .

The **n-fold Cartesian product** of the set A_1, \ldots, A_n , denoted by $A_1 \times \ldots \times A_n$ is the set of all ordered n-tuples with $a_i \in A_i$ for i=1,...,n.

An **n-ary** relation on sets A_1, \ldots, A_n is a subset of $A_1 \times \ldots \times A_n$.

FUNCTIONS

A **function** from a set A to a set B,denoted f: $A \rightarrow B$ is a binary relation R on A and B where for each element $a \in A$, there is exactly one ordered pair in R with first component a. Example: let A={1,2} and B={3,4} $R_1 = \{(1,3),(2,3)\}$ $R_2 = \{(1,3),(2,4)\}$ are functions. But $R_3 = \{(1,3)\}$ is not a function.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FUNCTIONS

A function f: $A \rightarrow B$, we call A the **domain** of f and B is the **codomain** of f.

If a is any element of A we write f(a) for that element b of B such that $(a,b)\in f$. f(a) is called the **image** of a under f.

The range of f is the image of its domain, denoted by $f(A)=\{b | \text{there is a in } A \text{ such that } b=f(a)\}$

For $A' \subseteq A$, $f(A') = \{f(a): a \in A'\}$ is called the image of A' under f.

Example of functions:

The integer addition(+) is a function from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} .

FUNCTIONS

A function f: $A \to B$ is **one-to-one** if for any two distinct elements $a, a' \in A, f(a) \neq f(a')$

A function f: $A \rightarrow B$ is **onto** B if each element of B is the image under f of some element of A.

A function $f A \rightarrow B$ is a **bijection** between A and B if it is both one-to-one and onto B.

Example: let A={1,2} and B={3,4} R_1 = {(1,3),(2,4)} is one-to-one and onto B, hence R_1 is bijective R_2 = {(1,3),(2,3)} is neither one-to-one nor onto B.

INVERSE OF A FUNCTION

The **inverse** of a binary relation $R \subseteq A \times B$, denoted $R^{-1} \subseteq B \times A$ is the relation {(b,a): (a,b) \in R}. For example, let R_2 = {(1,3),(2,3)} then R_2^{-1} = {(3,1),(3,2)}.

The inverse of a function need not be a function. For example, $R_2 = \{(1,3), (2,3)\}$ is a function but $R_2^{-1} = \{(3,1), (3,2)\}$ is not a function.

A function f: $A \rightarrow B$ may fail to have an inverse if there is some element $b \in B$ such that $f(a) \neq b$ for all $a \in A$.

$$f^{-1}(f(a)) = a$$
 for each $a \in A$ and $f(f^{-1}(b)) = b$ for each $b \in B$.

COMPOSITIONS

For binary relations $Q \subseteq A \times B$ and $R \subseteq B \times C$, the **composition** $Q \circ R$ is defined by $Q \circ R = \{(a,c): \exists b \in B \text{ such that } (a,b) \in Q \text{ and } (b,c) \in R \}$

The composition of two functions f: $A \rightarrow B$ and g: $B \rightarrow C$ is a function h from A to C such that h(a)=g(f(a)) for each $a \in A$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Example: Let $R_1 = \{(1,a), (2,a)\}$ and $R_2 = \{(a,3), (b,4)\}$ $R_1 \circ R_2 = \{(1,3), (2,3)\}$

EXERCISES

Let
$$R=\{(a,b),(a,c),(c,d),(a,a),(b,a)\}$$

What is $R \circ R$?
What is R^{-1} ?
Is $R, R \circ R$, or R^{-1} a function?

・ロト・西ト・ヨー シック・ロト