Sets

Computer Mathematics I

Jiraporn Pooksook
Department of Electrical and Computer Engineering
Naresuan University

SETS

A Set is a collection of objects.
Examples of sets are:

- the set of integers, denoted by \mathbb{Z}.
- the set of nonnegative integers, denoted by \mathbb{N}.
- \{red, ball, green\}

1. The elements of a set need not be related in any way.
2. The objects comprising a set are called its elements or members. If x is a member of a set L, then we write $x \in L$. For example $4 \in \mathbb{N}$.
3. A singleton is a set having only one member.
4. A set with no element is called the empty set, and is denoted by \emptyset.

SETS

There are two ways to display a set:

- Simply list all their elements, separate by commas and include in braces as the following example $\mathbb{N}=\{0,1,2, \ldots\}$ or $S=\{a, b, c\}$
- refer to other sets and the properties that characterize the elements of this set. For example, the set of odd natural numbers can be defined by
$\mathrm{O}=\{\mathrm{x}: \mathrm{x} \in \mathbb{N}$ and x is not divisible by 2$\}$.
A set with infinitely many elements is called infinite and a set with finitely many elements is said to be finite. The example of finite set is $S=\{a, b, c\}$ and hence, $\mathbb{N}=\{0,1,2, \ldots\}$ is infinite set.

SETS

1. A set X is a subset of a set Y, written $X \subseteq Y$, if each element of X is also an element of Y.
2. A set X is a proper subset of a set Y, written $X \subset Y$ if X is a subset of Y and X is not equal Y.
3. A set X is equal a set Y if X is a subset of Y and Y is a subset of X. $X=Y$ if $X \subseteq Y$ and $Y \subseteq X$
4. For any set X, the empty set \emptyset is a subset of $X, \emptyset \subseteq X$ and X is a subset of itself, $X \subseteq X$.

UNION

The union of two sets X, Y is the set of elements which belongs to at least one of them.
$X \cup Y=\{x: x \in X$ or $x \in Y\}$

For example, the union of a set of even integers and odd integers is the set \mathbb{Z}.

Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$
$A \cup B=\{1,2,3,4,5\}$

INTERSECTION

The intersection of two sets X, Y is the set of elements which belongs to both of them. $X \cup Y=\{x: x \in X$ and $x \in Y\}$

For example, the intersection of a set of even integers and odd integers is the empty set \emptyset.

Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$
$A \cap B=\{3\}$

Difference

The difference $X \backslash Y$ of two sets X, Y is the set of those elements in X that are not in Y .
$X \backslash Y$ or $X-Y=\{x: x \in X$ and $x \notin Y\}$
For example, the difference of a set of even integers and odd integers is the set of even integers.

Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$
$A \backslash B=\{1,2\}$

LAW OF SET OPERATIONS

1. Idempotency $A \cup A=A$

$$
A \cap A=A
$$

2. Commutativity $A \cup B=B \cup A$

$$
A \cap B=B \cap A
$$

3. Associativity $(A \cup B) \cup C=A \cup(B \cup C)$ $(A \cap B) \cap C=A \cap(B \cap C)$
4. Distributivity $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

5. Absorption $A \cap(A \cup B)=A$

$$
A \cup(A \cap B)=A
$$

6. DeMorgan's Laws $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$

$$
A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)
$$

LAW OF SET OPERATIONS

Suppose there is a big set U such that $A \subseteq \mathrm{U}$ and $B \subseteq \mathrm{U}$. Let $\bar{A}=\mathrm{U} \backslash A, \bar{B}=\mathrm{U} \backslash B$ Then

- $A \backslash B=A \cap \bar{B}$
- $\overline{A \cap B}=\bar{A} \cup \bar{B}$
- $\overline{A \cup B}=\bar{A} \cap \bar{B}$

Power SET

The power set of a set S, denoted by 2^{S}, is the set of all subsets of S.
Example:
$S=\{1,2,3\}$
$2^{S}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

If S is a collection of sets then $\bigcup S$ is the set whose elements are the elements of the sets in S .

Example: $S=\{\{1,2\},\{2,3\}\}$
$\bigcup S=\{1,2,3\}$

Partition

A partition of a set S is a set Π of subsets of S, i.e. $\Pi \subseteq 2^{S}$, such that

1. each element of Π is nonempty
2. distinct members of Π are disjoint
3. $\cup \Pi=S$

Example $\mathrm{S}=\{1,2,3\}$
$\Pi=\{\{1\},\{2,3\}\}$ or
$\Pi=\{\{1\},\{2\},\{3\}\}$ or
$\Pi=\{\{1,2,3\}\}$
however, $X=\{\{1,2\},\{2,3\}\}$ and $Y=\{\emptyset,\{1,3\},\{2\}\}$ are not partitions of S.

EXERCISES

Let $A=\{0,2,4,6\}$
$\mathrm{B}=\{1,3,5\}$
$C=\{0,1,2,3,4,5,6,7\}$
D= \emptyset
$\mathrm{E}=\mathbb{N}$
$\mathrm{F}=\{\{0,2,4,6\}\}$
Question:
Find subsets of $A=$? subsets of $B=$? subsets of $C=$?
subsets of $D=$? subsets of $E=$? and subsets of $F=$?

EXERCISES

Let $\mathrm{U}=\{0,1,2,3,4,5,6,7,8,9\}$
$\mathrm{A}=\{0,1,2,3\}$
$B=\{0,2,4\}$
$C=\{0,3,6,9\}$
Question:
Find $\mathrm{A} \cup \mathrm{B}=$?
$\mathrm{A} \cap \mathrm{B}=$?
$\bar{A}=$?
$\overline{A \cap B}=$?
$(\mathrm{B} \cup \mathrm{C})-\mathrm{A}=$?

