Special Types of Binary Relations Computer Mathematics I

Jiraporn Pooksook Department of Electrical and Computer Engineering Naresuan University

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

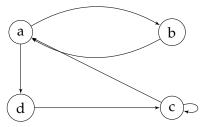
DIRECTED GRAPH

An relation $R \subseteq A \times A$, for any set A, can be represented as a **directed graph**.

- ► A node of the directed graph is represented by a small circle to represent each element of A.
- ► An arrow is drawn from a to b if and only if (a,b)∈R.
- The arrows are edges of the directed graph.
- From a node of a graph to another there is either no edge, or one edge.

- ロ > - 4 日 > - 4 日 > - 4 日 > - 9 0 0

For example, $R = \{(a,b), (b,a), (a,d), (d,c), (c,c), (c,a)\}$



A relation $R \subseteq A \times A$ is **reflexive** if $(a,a) \in R$ for each $a \in A$.

Example: Let $A=\{1,2\}$ $R=\{(1,1), (1,2), (2,2)\}$ is reflexive. $R=\{(1,2), (2,2)\}$ is not reflexive.

A relation $R \subseteq A \times A$ is **symmetric** if $(b,a) \in R$ whenever $(a,b) \in R$. Symmetric relation can be represented by **undirected graph**.

Example: Let $A=\{1,2\}$ $R = \{(1,2), (2,1), (2,2)\}$ is symmetric. $R=\{(1,1), (1,2), (2,2)\}$ is not symmetric.

A relation $R \subseteq A \times A$ is **antisymmetric** if whenever(a,b) \in R and a and b are distinct, then (b,a) \notin R.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: Let A= $\{1,2\}$ R= $\{(1,1), (1,2), (2,2)\}$ is antisymmetric. R = $\{(1,2), (2,1), (2,2)\}$ is not antisymmetric.

A relation $R \subseteq A \times A$ is **transitive** if whenever $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$.

Example: Let $A=\{1,2,3\}$ $R=\{(1,1), (1,2), (2,2)\}$ is not transitive. $R=\{(1,2), (1,3), (2,3)\}$ is transitive.

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

EQUIVALENCE

A relation $R \subseteq A \times A$ is an **equivalence relation** if R is reflexive, symmetric and transitive.

Let \equiv be an equivalent relation on a set A. Then for each a in A, **the equivalence class of a with respect to** \equiv is denoted by $[a]_{\equiv}$ and is defined formally by

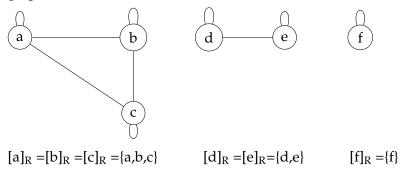
 $[a]_{\equiv} = \{b \mid (a,b) \in R\}$

When the context \equiv is clear, we simply write [a] for [a] \equiv .

A representation of an equivalent relation $R \subseteq A \times A$ as an undirected graph consists of a number of "**clusters**" where within clusters each pair is connected by a line. The set of nodes in a cluster is an equivalence class.

EQUIVALENCE

Example: Let A={a,b,c,d,e,f} $R \subseteq A \times A$ and R is represented as the following undirected graph.



Equivalence and Modulo

Property Let \equiv be an equivalent relation on a set A. Then for any two elements a,b in A, either [a]=[b] or [a], [b] are disjoint.

Let R be an equivalent relation on a set A. Define **A modulo R** to be the set

 $A/R = \{[a]_R \mid a \in A\}$

Theorem 1 Let $R \subseteq A \times A$ be an equivalent relation. Then A modulo R is a partition of A.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Example:(from previous example) $A/R = \{[a]_R, [d]_R, [f]_R\} = \{[b]_R, [e]_R, [f]_R\}$ $= \{ \{a,b,c\}, \{d,e\}, \{f\} \}$

PARTIAL AND TOTAL ORDERS

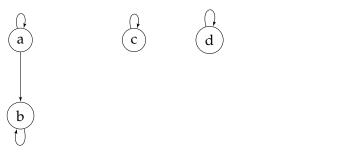
A relation that is reflexive, transitive and antisymmetric is called a **partial order**.

A partial order $R \subseteq A \times A$ is called a **total order** if for all $a, b \in A$, either $(a,b) \in R$ or $(b,a) \in R$.

A **Path from** a **to** b in a binary relation $R \subseteq A \times A$ is a sequence (a_1, \ldots, a_n) , $n \ge 1$ such that $a = a_1$, $b = a_n$, for each i = 1, ..., n-1, $(a_i, a_{i+1}) \in \mathbb{R}$.

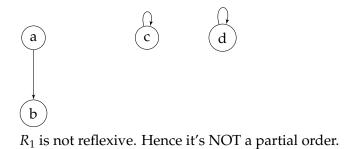
▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

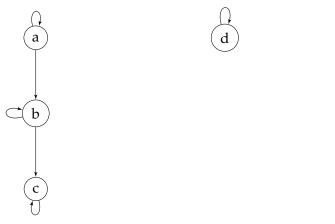
A path (a_1, \ldots, a_n) is a **cycle** if $a_1 = a_n$ and all a_i 's are distinct.



 R_0 is reflexive, transitive, and antisymmetric. Hence it's a partial order. It's NOT a total order.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □





R_2 is not transitive. Hence it's NOT a partial order.

 R_3 is reflexive, symmetric, and transitive. Hence it's a partial order.

For all $a, b \in A$, either $(a, b) \in R$ or $(b, a) \in R$ then it's a total order.

EXERCISES

Let A be a nonempty set and let $R \subseteq A \times A$ be the empty set. Which properties does R have?

- 1. Reflexive.
- 2. Symmetry.
- 3. Antisymmetry.
- 4. Transitivity.

EXERCISES

Let $R \subseteq A \times A$ be a binary relation as defined below. In which cases is R a partial order? a total order?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- 1. A = the positive integers; (a,b)∈R if and only if b is divisible by a.
- 2. A = \mathbb{N} ; (a,b) \in R if and only if b=a or b= a+1.