Number Systems Computer Mathematics I

Jiraporn Pooksook Department of Electrical and Computer Engineering Naresuan University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is a bit?

- A bit stands for <u>binary digit</u>.
- A bit is merely true or false.
- It can be considered as 0 or 1.
- Each bit represents a unit of information.
- Most computers use blocks of 8 bits or bytes as the smallest addressable unit of memory.

Number Notations

Most computers count in binary while we can understand as decimal numbers.

 $301.75 = 3 \times 10^2 + 0 \times 10^1 + 1 \times 10^0 + 7 \times 10^{-1} + 5 \times 10^{-2}$

- 301.75 is on base-10.
- ▶ 301 is integer part.
- 75 is fractional part.
- 3 is the most significant digit.
- ▶ 5 is the least significant digit.

Most computers count in binary while we can understand as decimal numbers.

 $22=2\times 10^1+2\times 10^0$

Binary has only 2 digits so the base becomes 2.

$$10110 = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 16 + 0 + 4 + 2 + 0 = 22$$

$$10.110 = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3}$$

$$= 2.75$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Other Notations

Higher bases make for shorter numbers that are easier to manipulate.

Octal is base-8 (8=2³ digits, which means 3 binary bits per digit) $22_{10} = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 10 \ 110$ $10 \ 110 = 26_8 \ (2 \times 8^1 + 6 \times 8^0 = 22)$

Hexadecimal is base-16 (16=2⁴ digits, which means 4 binary bits per digit) $22_{10} = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ = 1 0110 1 0110 = 16₁₆ (1 × 16¹ + 6 × 16⁰ =22)

Bytes

A single byte consists of 8 bits. In binary notation its values ranges from 00000000_2 to 11111111_2 which is from 0_{10} to 255_{10} .

We write bit patterns as base-16 or hexadecimal numbers which use digits 0-9 and letters A-F.

In C programming language, numeric constants start with '0x' or '0X' are interpreted as being in hexadecimal.

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	00	01	10	11	100	101	110	111
Hex digit	8	9	A	В	С	D	E	F
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

Practice

Convert 12 based-10 to based-2 ($12_{10} = ?_2$)

Answer:

base	2 ⁴	2 ³	2 ²	2 ¹	20	
multiply	16	8	4	2	1	
binary	0	1	1	0	0	
sum	0	8	4	0	0	= 12

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $12_{10} = 8{+}4 = 1100_2$

Practice

Convert 12 based-10 to based-8 (12_{10} = $?_8)$

Answer:

base	8 ²	8 ¹	8 ⁰	
multiply	64	8	1	
binary	0	1	4	
sum	0	8	4	= 12

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $12_{10} = 8 + 4 = 14_8$

Practice

Convert 27 based-10 to based-16 (27_{10} = $?_{16})$

Answer:

base	16 ²	16 ¹	16 ⁰	
multiply	256	16	1	
binary	0	1	В	
sum	0	16	11	= 27

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $27_{10} = 16{+}11 = 1B_{16}$

Data Size

C declaration	32-bit	64-bit
char	1	1
short int	2	2
int	4	4
long int	4	8
long long int	8	8
char *	4	8
float	4	4
double	8	8

Figure 2.3 Sizes (in bytes) of C numeric data types. The number of bytes allocated varies with machine and compiler. This chart shows the values typical of 32-bit and 64-bit machines.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

Data Representations

C data type	Minimum	Maximum
char	-128	127
unsigned char	0	255
short [int]	-32,768	32,767
unsigned short [int]	0	65,535
int	-2,147,483,648	2,147,483,647
unsigned [int]	0	4,294,967,295
long[int]	-2,147,483,648	2,147,483,647
unsigned long [int]	0	4,294,967,295
long long [int]	-9,223,372,036,854,775,808	9,223,372,036,854,775,807
unsigned long long [int]	0	18,446,744,073,709,551,615

Figure 2.8 Typical ranges for C integral data types on a 32-bit machine. Text in square brackets is optional.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

Data Representations

C data type	Minimum	Maximum
char	-128	127
unsigned char	0	255
short [int]	-32,768	32,767
unsigned short [int]	0	65,535
int	-2,147,483,648	2,147,483,647
unsigned [int]	0	4,294,967,295
long[int]	-9,223,372,036,854,775,808	9,223,372,036,854,775,807
unsigned long [int]	0	18,446,744,073,709,551,615
long long [int]	-9,223,372,036,854,775,808	9,223,372,036,854,775,807
unsigned long long [int]	0	18,446,744,073,709,551,615

Figure 2.9 Typical ranges for C integral data types on a 64-bit machine. Text in square brackets is optional.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

Practice: Base Conversion

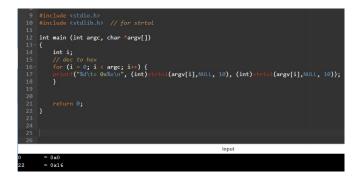


Figure: Slightly changed from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Practice: Base Conversion



Figure: Slightly changed from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Exercise

Question 1: Convert 53 based-10 to based-2 $(53_{10} = ?_2)$

Question 2: Convert 53 based-10 to based-8 ($53_{10} = ?_8$)

Question 3: Convert 53 based-10 to based-16 ($53_{10} = ?_{16}$)

Exercise

Question 4: Convert 100101 based-2 to based-10 $(100101_2 = ?_{10})$

Question 5: Convert 105 based-8 to based-10 $(105_8 = ?_{10})$

Question 6: Convert 45 based-16 to based-10 $(45_{16} = ?_{10})$