Integer Representations

Computer Mathematics I

Jiraporn Pooksook
Department of Electrical and Computer Engineering Naresuan University

Unsigned Encodings

When bit i in the binary representation has value 1 , it contributes 2^{i} to the value.
For example for 4 bits, unsigned number represents from 0 to 15 in decimal notation.

$$
B 2 U_{w}(\vec{x})=\sum_{i=0}^{w-1} x_{i} 2^{i}
$$

$$
\begin{aligned}
0000 & =0 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0} \\
& =0 \\
1011= & 1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =11 \\
1111= & 1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =15
\end{aligned}
$$

Unsigned Integer Addition

Addition of unsigned integers is the same as addition of decimal numbers.

- $0+0=0$
- $1+0=1$
- $0+1=1$
- $1+1=0$, carry 1

The problem is that computers have fixed sized types so we can't go on adding.

Carry flag: 0

Carry flag:

Figure: Retrieved from https://www.cl.cam.ac.uk/teaching/1415/CompFund/NumberSystemsAnnotated.pdf

Unsigned Integer Multiplication

- $101.011=$?

101 .
011
101
$\begin{aligned} & 101 \\ & 000\end{aligned}+$
$001111=15$

- $011.011=001001=9$

Negative Numbers: signed bit

If we represent signed numbers by defining the most significant bit as a sign bit then
0 is used for positive number
1 is used for negative number

$$
\begin{aligned}
0000 & =0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0} \\
& =0 \\
0111 & =1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =7 \\
1000 & =-\left[0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}\right] \\
& =-0 \\
1111 & =-\left[1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}\right] \\
& =-7
\end{aligned}
$$

If we do normal addition/subtraction, the result is not correct.
$1101+0001=1110(-6) \not \equiv-5+1=-4$
$\not \equiv 13+1=14$ (unsigned representation)

Practice: signed-bit format

Convert -53 based-10 to based-2 in signed-bit format $\left(-53_{10}=?_{2}\right)$
Answer:

base	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
multiply	32	16	8	4	2	1	
binary	1	1	0	1	0	1	
sum	32	16	0	4	0	1	$=53$

$53_{10}=32+16+4+1=110101_{2}$
Then $-53=1110101$

Negative Numbers: one's complement

If we represent signed numbers by defining the most significant bit as a sign bit and
for negative number, the other bits are flipped from 0 to 1 and 1 to 0 then

$$
\begin{aligned}
0000 & =0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0} \\
& =0 \\
0111 & =1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =7 \\
1111= & -\left[0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}\right] \\
& =-0 \\
1100 & =-\left[0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}\right] \\
& =-3 \\
1000 & =-\left[1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}\right] \\
& =-7
\end{aligned}
$$

Practice: one's complement

Convert -53 based-10 to based-2 in one's complement format $\left(-53_{10}=?_{2}\right)$

Answer:

base	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
multiply	32	16	8	4	2	1	
binary	1	1	0	1	0	1	
sum	32	16	0	4	0	1	$=53$

$53_{10}=32+16+4+1=110101_{2}$
Convert bit 0 to 1 and 1 to 0
$110101 \rightarrow 001010$
Then $-53=1001010$

Negative Numbers: two's complement

If we represent signed numbers by defining the most significant bit as a sign bit and for negative number, the other bits are flipped from 0 to 1 and 1 to 0 and add 1 then

$$
\begin{aligned}
& 0000=0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=0 \\
& 0111=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=7 \\
& 1111=-\left[0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}+0001\right]=-1 \\
& 1100=-\left[0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}+0001\right]=-4
\end{aligned}
$$

$$
B 2 T_{w}(\vec{x})=-x_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} x_{i} 2^{i}
$$

$$
1111=-1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}
$$

$$
=-8+4+2+1=-1
$$

Two's complement

Weight	12,345		-12,345		53,191	
	Bit	Value	Bit	Value	Bit	Value
1	1	1	1	1	1	1
2	0	0	1	2	1	2
4	0	0	1	4	1	4
8	1	8	0	0	0	0
16	1	16	0	0	0	0
32	1	32	0	0	0	0
64	0	0	1	64	1	64
128	0	0	1	128	1	128
256	0	0	1	256	1	256
512	0	0	1	512	1	512
1,024	0	0	1	1,024	1	1,024
2,048	0	0	1	2,048	1	2,048
4,096	1	4,096	0	0	0	0
8,192	1	8,192	0	0	0	0
16,384	0	0	1	16,384	1	16,384
$\pm 32,768$	0	0	1	-32,768	1	32,768
Total		12,345		-12,345		53,191

Figure 2.14 Two's-complement representations of 12,345 and $-12,345$, and unsigned representation of 53,191 . Note that the latter two have identical bit representations.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

Negative Numbers: two's complement

- Positive to negative: Invert all the bits and add 1

$$
0111=7 \Rightarrow 1000 \Rightarrow 1001=-7
$$

- Negative to positive: Invert all the bits and add 1 $1001=-7 \Rightarrow 0110 \Rightarrow 0111=7$

Practice: two's complement

Convert -53 based-10 to based-2 in two's complement format $\left(-53_{10}=?_{2}\right)$

Answer:

base	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
multiply	32	16	8	4	2	1	
binary	1	1	0	1	0	1	
sum	32	16	0	4	0	1	$=53$

$53_{10}=32+16+4+1=110101_{2}$
Convert bit 0 to 1 and 1 to 0
$110101 \rightarrow 001010$
Add 1
$001010+000001=001011$
Then $-53=1001011$

Addition Two's complement

If we do normal addition, the result is not correct.

$$
\begin{aligned}
0100+0100=1000(-8) & \not \equiv 4+4=+8 \\
& \not \equiv 4+4=8(\text { unsigned representation })
\end{aligned}
$$

So we introduce an overflow flag that indicates this problem.

Figure: Retrieved from https://www.cl.cam.ac.uk/teaching/1415/CompFund/NumberSystemsAnnotated.pdf

Subtraction Two's complement

We just add two's complement.
$0100-0011=0100+1101=0001$
$1101-0100=1101+1100=1001$

Addition/Subtraction Two's complement

Hence, when adding/subtracting

- carry flag \rightarrow overflow for unsigned integer
- overflow flag \rightarrow overflow for signed integer
- If the sum of two positive numbers yields a negative result, the sum has overflowed.
- If the sum of two negative numbers yields a positive result, the sum has overflowed.
- Otherwise, the sum has not overflowed.

Two's complement Multiplication

We extend the integers to twice and just do the normal multiplication. Then take only last 8 digits.

- 1101(-3) . 0011(3) = 11111101.00000011

$$
=1011110111=11110111
$$

$11110111=-9$ (two's complement)

- Some cases we don't need to extend bit. 0011(3) . 0011(3) $=001001=9$ (two's complement)

Mode	x		y		$x \cdot y$		Truncated $x \cdot y$	
Unsigned	5	[101]	3	[011]	15	[001111]	7	[111]
Two's comp.	-3	[101]	3	[011]	-9	[110111]	-1	[111]
Unsigned	4	[100]	7	[111]	28	[011100]	4	[100]
Two's comp.	-4	[100]	-1	[111]	4	[000100]	-4	[100]
Unsigned	3	[011]	3	[011]	9	[001001]	1	[001]
Two's comp.	3	[011]	3	[011]	9	[001001]	1	[001]

Figure 2.26 Three-bit unsigned and two's-complement multiplication examples. Although the bit-level representations of the full products may differ, those of the truncated products are identical.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

Exercise

Question 1:
Convert 0110101 based-2 in two's complement format to based-10 ($0110101_{2}=?_{10}$)

Question 2:
Convert 1001011 based-2 in two's complement format to based-10 ($1001011_{2}=?_{10}$)

Question 3:
Convert 1001011 based-2 in one's complement format to based-10 ($\left.1001011_{2}=?_{10}\right)$

Question 4:
Convert 1001011 based-2 in signed bit format to based-10 ($\left.1001011_{2}=?_{10}\right)$

Exercise

Question 5:
Convert -25 based-10 to one's complement format

Question 6:
Convert -25 based-10 to two's complement format

