Integer Representations Computer Mathematics I

Jiraporn Pooksook Department of Electrical and Computer Engineering Naresuan University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Unsigned Encodings

When bit i in the binary representation has value 1, it contributes 2^i to the value.

For example for 4 bits, unsigned number represents from 0 to 15 in decimal notation.

$$B2U_w(\overrightarrow{x}) = \sum_{i=0}^{w-1} x_i 2^i$$

$$\begin{array}{l} 0000 = 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 \\ = 0 \\ 1011 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\ = 11 \\ 1111 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\ = 15 \end{array}$$

Unsigned Integer Addition

Addition of unsigned integers is the same as addition of decimal numbers.

The problem is that computers have fixed sized types so we can't go on adding.

Unsigned Integer Multiplication

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Negative Numbers: signed bit

If we represent signed numbers by defining the most significant bit as a sign bit then

- 0 is used for positive number
- 1 is used for negative number

$$\begin{array}{l} 0000 = 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 \\ = 0 \\ 0111 = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\ = 7 \\ 1000 = - \left[0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 \right] \\ = -0 \\ 1111 = - \left[1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \right] \\ = -7 \end{array}$$

If we do normal addition/subtraction, the result is not correct. $1101 + 0001 = 1110 (-6) \neq -5 + 1 = -4$ $\neq 13 + 1 = 14$ (unsigned representation)

Practice: signed-bit format

Convert -53 based-10 to based-2 in signed-bit format (-53 $_{10}$ = ?₂)

Answer:

base	25	24	2 ³	22	2 ¹	20	
multiply	32	16	8	4	2	1	
binary	1	1	0	1	0	1	
sum	32	16	0	4	0	1	= 53

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 $\begin{array}{l} 53_{10}=32{+}16{+}4{+}1=110101_2\\ \text{Then -}53=1\ 110101 \end{array}$

Negative Numbers: one's complement

If we represent signed numbers by defining the most significant bit as a sign bit and for negative number, the other bits are flipped from 0 to 1 and 1 to 0 then

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

$$\begin{array}{l} 0000 = 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 \\ = 0 \\ 0111 = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\ = 7 \\ 1111 = - \left[0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 \right] \\ = -0 \\ 1100 = - \left[0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \right] \\ = -3 \\ 1000 = - \left[1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \right] \\ = -7 \end{array}$$

Practice: one's complement

Convert -53 based-10 to based-2 in one's complement format (-53 $_{10}$ = $?_2)$

Answer:

base	2 ⁵	24	2 ³	22	21	20	
multiply	32	16	8	4	2	1	
binary	1	1	0	1	0	1	
sum	32	16	0	4	0	1	= 53

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\begin{array}{l} 53_{10}=32{+}16{+}4{+}1=110101_2\\ \text{Convert bit 0 to 1 and 1 to 0}\\ 110101\rightarrow001010\\ \text{Then -}53=1\ 001010 \end{array}$

Negative Numbers: two's complement

If we represent signed numbers by defining the most significant bit as a sign bit and for negative number, the other bits are flipped from 0 to 1 and 1 to 0 and add 1 then

$$\begin{array}{l} 0000 = 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 0 \\ 0111 = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 7 \\ 1111 = - \left[0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 + 0001 \right] = -1 \\ 1100 = - \left[0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0001 \right] = -4 \end{array}$$

$$B2T_w(\vec{x}) = -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

 $1111 = -1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

$$= -8 + 4 + 2 + 1 = -1$$

Two's complement

Weight	1	2,345	_	12,345	53,191		
	Bit	Value	Bit	Value	Bit	Value	
1	1	1	1	1	1	1	
2	0	0	1	2	1	2	
4	0	0	1	4	1	4	
8	1	8	0	0	0	0	
16	1	16	0	0	0	0	
32	1	32	0	0	0	0	
64	0	0	1	64	1	64	
128	0	0	1	128	1	128	
256	0	0	1	256	1	256	
512	0	0	1	512	1	512	
1,024	0	0	1	1,024	1	1,024	
2,048	0	0	1	2,048	1	2,048	
4,096	1	4,096	0	0	0	0	
8,192	1	8,192	0	0	0	0	
16,384	0	0	1	16,384	1	16,384	
$\pm 32,768$	0	0	1	-32,768	1	32,768	
Total		12,345		-12,345		53,191	

Figure 2.14 Two's-complement representations of 12,345 and -12,345, and unsigned representation of 53,191. Note that the latter two have identical bit representations.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

Negative Numbers: two's complement

Positive to negative: Invert all the bits and add 1 0111 = 7 ⇒ 1000 ⇒ 1001 = -7
Negative to positive: Invert all the bits and add 1

 $1001 = \textbf{-7} \Rightarrow 0110 \Rightarrow 0111 = 7$

Practice: two's complement

Convert -53 based-10 to based-2 in two's complement format (-53 $_{10}$ = ?2)

Answer:

base	25	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
multiply	32	16	8	4	2	1	
binary	1	1	0	1	0	1	
sum	32	16	0	4	0	1	= 53

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $53_{10} = 32+16+4+1 = 110101_2$ Convert bit 0 to 1 and 1 to 0 110101 \rightarrow 001010 Add 1 001010 + 000001 = 001011 Then -53 = 1 001011

Addition Two's complement

If we do normal addition, the result is not correct. 0100 + 0100 = 1000 (-8) $\neq 4 + 4 = +8$ $\neq 4 + 4 = 8$ (unsigned representation)

So we introduce an overflow flag that indicates this problem.

Figure: Retrieved from https://www.cl.cam.ac.uk/teaching/1415/CompFund/NumberSystemsAnnotated.pdf

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Subtraction Two's complement

We just add two's complement.

0100 - 0011 = 0100 + 1101 = 0001

1101 - 0100 = 1101 + 1100 = 1001

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Addition/Subtraction Two's complement

Hence, when adding/subtracting

- \blacktriangleright carry flag \rightarrow overflow for unsigned integer
- overflow flag \rightarrow overflow for signed integer
- If the sum of two positive numbers yields a negative result, the sum has overflowed.
- If the sum of two negative numbers yields a positive result, the sum has overflowed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Otherwise, the sum has not overflowed.

Two's complement Multiplication

We extend the integers to twice and just do the normal multiplication. Then take only last 8 digits.

Some cases we don't need to extend bit. 0011(3) . 0011(3) = 00 1001 = 9 (two's complement)

Mode	x		у		$x \cdot y$		Truncated $x \cdot y$	
Unsigned	5	[101]	3	[011]	15	[001111]	7	[111]
Two's comp.	-3	[101]	3	[011]	-9	[110111]	-1	[111]
Unsigned	4	[100]	7	[111]	28	[011100]	4	[100]
Two's comp.	-4	[100]	$^{-1}$	[111]	4	[000100]	-4	[100]
Unsigned	3	[011]	3	[011]	9	[001001]	1	[001]
Two's comp.	3	[011]	3	[011]	9	[001001]	1	[001]

Figure 2.26 Three-bit unsigned and two's-complement multiplication examples. Although the bit-level representations of the full products may differ, those of the truncated products are identical.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Exercise

Question 1: Convert 0110101 based-2 in two's complement format to based-10 $(0110101_2 = ?_{10})$

Question 2: Convert 1001011 based-2 in two's complement format to based-10 $(1001011_2 = ?_{10})$

Question 3: Convert 1001011 based-2 in one's complement format to based-10 $(1001011_2 = ?_{10})$

Question 4: Convert 1001011 based-2 in signed bit format to based-10 $(1001011_2 = ?_{10})$

Exercise

Question 5: Convert -25 based-10 to one's complement format

Question 6: Convert -25 based-10 to two's complement format

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ