Floating point Numbers

Computer Mathematics I

Jiraporn Pooksook
Department of Electrical and Computer Engineering
Naresuan University

Fixed Point Notation

In Fixed Point Notation, the number is stored as a signed integer in two's complement format.
The radix point is the separator between integer and fractional parts.
signed integer . fractional
$0001.0110=+$
$0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4}$ $=1+1 / 4+1 / 8=1.375$
$1111.0000=>(110+001=111)=$
$0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+0 \times 2^{-2}+0 \times 2^{-3}+0 \times 2^{-4}$ $=-1$
$1100.0100=>(011+001=100)=$
$1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+0 \times 2^{-4}$ $=-4.25$

Floating point Notation

Floating Point Representation is based on Scientific Notation.

- Significant (mantissa)
- Base
- Exponent

It is written in a form:

$$
+/- \text { mantiss } a \times \text { Base }^{\text {Exponent }}
$$

Example:

$$
\begin{aligned}
123.45 & =1.2345 \times 10^{2} \\
& =12.345 \times 10^{1} \\
& =1234.5 \times 10^{-1}
\end{aligned}
$$

Normalised Scientific Notation

We choose an exponent so that the absolute value of the mantissa remains greater than or equal to 1 but less than the number base.

Example:
$500.0=5.0 \times 10^{2}$
$10.1_{2}=1.01 \times 2^{1}$
$0.111_{2}=1.11 \times 2^{-1}$
A binary number can be expressed in scientific scientific notation in several ways like decimal numbers.
$0.110010 \times 2^{5}=0.78125 \times 32=25$
$1.10010 \times 2^{4}=1.5625 \times 16=25$
$11.0010 \times 2^{3}=3.125 \times 8=25$
$110.010 \times 2^{2}=6.25 \times 4=25$
$1100.10 \times 2^{1}=12.5 \times 2=25$
$11001.0 \times 2^{0}=25 \times 1=25$

Fixed point vs Floating point

Fixed point allows calculations over a wide range of magnitudes.
Example:
$0.22 \times 0.22=0.0484$
Fixed point:
$0.220 \times 0.220=0.048$
Floating point:
$\left(2.2 \times 10^{-} 1\right) \times\left(2.2 \times 10^{-} 1\right)=4.84 \times 10^{-} 2$

IEEE FloAting-Point Representation

Floating point is represented in a form:

$$
V=(-1)^{s} \times M \times 2^{E}
$$

- The sign s determines whether the number is negative ($\mathrm{s}=$ 1) or positive ($\mathrm{s}=0$).
- The significand M is a fractional binary number that M is either $1 \leq \mathrm{M} \leq 2$ or $0 \leq \mathrm{M} \leq 1$.
- The exponent E weights the value by a (possibly negative) power of 2 and it is stored in the two's complement format.
- The bit representation of a floating point number is divided into three fields to encode these values:
- the single sign bit s directly code the sign s.
- the k-bit exponent field $\exp =e_{k-1} \ldots e_{1} e_{0}$ encodes the exponent E .
- the n -bit fraction field frac $=f_{n-1} \ldots f_{1} f_{0}$ encodes the significand M, but the value encoded also depends on whether or not the exponent field equals 0.

IEEE FloAting-Point Representation

Figure 2.31 Standard floating-point formats. Floating-point numbers are represented by three fields. For the two most common formats, these are packed in 32-bit (single precision) or 64-bit (double precision) words.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

IEEE FloAting-Point Representation

The value encoded by a given bit representation can be divided into three different cases (the latter having two variants), depending on the value of exp.

1. Normalized

3a. Infinity

3b. NaN

Figure 2.32 Categories of single-precision, floating-point values. The value of the exponent determines whether the number is (1) normalized, (2) denormalized, or a (3) special value.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

IEEE Floating-Point Representation

Case 1: Normalized values
It occurs when the bit pattern of exp is neither all zeros nor all ones. In this case, the exponent field is interpreted as representing a signed integer in biased form.

- $\mathrm{E}=\mathrm{e}-$ Bias where e is the unsigned number having bit representation $e_{k-1} \ldots e_{1} e_{0}$, and Bias is a bias value equal to $2^{k-1}-1$
- $0 \leq \mathrm{f} \leq 1$, having binary representation $0 . f_{n-1} \ldots f_{1} f_{0}$
- $\mathrm{M}=1+\mathrm{f}$ so M is in the range $[1,2)$

Example: 8-bit floating-point format, $\mathrm{k}=4$ exponent bits $\mathrm{n}=3$ fraction bits, the bias is 7 .
bit representation= 00110110

- $\mathrm{e}=6$
- $\mathrm{E}=6-7=-1$
- $\mathrm{f}=6 / 8$
- $\mathrm{M}=1+\mathrm{f}=14 / 8$
$-V=M \times 2^{E}=14 / 8 \times 1 / 2=0875$

IEEE FloAting-Point Representation

Case 2: Denormalized values
It occurs when the exponent field is all zeros. In this case, the exponent value is $\mathrm{E}=1$ - Bias , and the significand value is $\mathrm{M}=\mathrm{f}$.

- $\mathrm{E}=1$ - Bias where Bias is a bias value equal to $2^{k-1}-1$
- $0 \leq \mathrm{f} \leq 1$, having binary representation $0 . f_{n-1} \ldots f_{1} f_{0}$
- $\mathrm{M}=\mathrm{f}$

Example: 8-bit floating-point format, $\mathrm{k}=4$ exponent bits $\mathrm{n}=3$ fraction bits, the bias is 7 .
bit representation $=00000000$

- $\mathrm{e}=0$
- $\mathrm{E}=1-7=-6$
- $\mathrm{f}=0 / 8$
- $\mathrm{M}=\mathrm{f}=0 / 8$
- $\mathrm{V}=\mathrm{M} \times 2^{E}=0 / 8 \times 1 / 64=0.0$

IEEE Floating-Point Representation

Case 3: Special values
It occurs when the exponent field is all ones.

- when the fraction field is all zeros, the resulting values represent infinity, either $+\infty$ when $s=0$ or $-\infty$ when $s=1$.
- when the fraction field is nonzero, the resulting value is called a "NaN," short for "Not a Number." Such values are returned as the result of an operation where the result cannot be given as a real number or as infinity.

IEEE FloAting-Point Representation

Description	Bit representation	Exponent			Fraction		Value		
		e	E	2^{E}	f	M	$2^{E} \times M$	V	Decimal
Zero	00000000	0	-6	$\frac{1}{64}$	$\frac{0}{8}$	${ }_{8}^{0}$	$\frac{0}{512}$	0	0.0
Smallest pos.	00000001	0	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{512}$	$\frac{1}{512}$	0.001953
	00000010	0	-6	$\frac{1}{64}$	$\frac{2}{8}$	$\frac{2}{8}$	$\frac{2}{512}$	$\frac{1}{256}$	0.003906
	00000011	0	-6	$\frac{1}{64}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{512}$	$\frac{3}{512}$	0.005859
Largest denorm.	00000111	0	-6	$\frac{1}{64}$	$\frac{7}{8}$	$\frac{7}{8}$	$\frac{7}{512}$	$\frac{7}{512}$	0.013672
Smallest norm.	00001000	1	-6	$\frac{1}{64}$	$\frac{0}{8}$	$\frac{8}{8}$	$\frac{8}{512}$	$\frac{1}{64}$	0.015625
	00001001	1	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{9}{8}$	$\frac{9}{512}$	$\frac{9}{512}$	0.017578
	00110110	6	-1	$\frac{1}{2}$	$\frac{6}{8}$	$\frac{14}{8}$	$\frac{14}{16}$	$\frac{7}{8}$	0.875
	00110111	6	-1	$\frac{1}{2}$	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{15}{16}$	$\frac{15}{16}$	0.9375
One	00111000	7	0	1	$\frac{0}{8}$	$\frac{8}{8}$	$\frac{8}{8}$	1	1.0
	00111001	7	0	1	$\frac{1}{8}$	$\frac{9}{8}$	$\frac{9}{8}$	$\frac{9}{8}$	1.125
	00111010	7	0	1	$\frac{2}{8}$	$\frac{10}{8}$	$\frac{10}{8}$	5	1.25
	01110110	14	7	128	$\frac{6}{8}$	$\frac{14}{8}$	$\frac{1792}{8}$	224	224.0

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

IEEE 754 standard Floating-Point 32 bits

Floating point is represented in a form:

$$
V=(-1)^{s} \times(1 . f)_{2} \times 2^{\text {exponent }-127}
$$

- Sign for 1 bit is allocated where s determines negative ($\mathrm{s}=$ 1) or positive ($\mathrm{s}=0$).
- Mantissa or significand is allocated 23 bits.
- Exponent is allocated 8 bits where the value of bias is 127 . Thus a stored value -127 means that exponent $=0$.

b_{0}	$\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \ldots \ldots \ldots \ldots \ldots \mathrm{~b}_{8}$	$\mathrm{b}_{9} \mathrm{~b}_{10} \mathrm{~b}_{11} \ldots \ldots \mathrm{b}_{30} \mathrm{~b}_{31}$
Sign	Exponent	Significand

Figure: Retrieved from IEEE Standard for Floating Point Numbers,V Rajaraman

IEEE 754 standard Floating-Point 32 bits

Example: Represent 52.21875 in 32-bits IEEE 754 standard

- bit representation $52.21875=110100.00111$
- $52.21875=1.1010000111 \times 2^{5}$
- Normalized significand $=.1010000111$
- Exponent (e-127) $=5$
- Hence e=132

Therefore the bit representation in IEEE 754 format is

0	10000100	10100001110000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

Figure: Retrieved from IEEE Standard for Floating Point Numbers,V Rajaraman

IEEE 754 standard Floating-Point 32 bits

Representation of zero: Zero is represented in the IEEE Standard by all 0 s for the exponent and all 0 s for the significand.

0	00000000	00000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

1	00000000	00000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

Figure: Retrieved from IEEE Standard for Floating Point Numbers,V Rajaraman

IEEE 754 standard Floating-Point 32 bits

Representation of infinity: All 1s in the exponent field is assumed to represent infinity.
$+\infty$

0	11111111	00000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

$-\infty$

1	11111111	00000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

Figure: Retrieved from IEEE Standard for Floating Point Numbers,V Rajaraman

IEEE 754 standard Floating-Point 32 bits

Representation of Non Numbers:

- Quiet NaN which is used when the result of an operation is not defined such as $0 / 0$.
- Signalling Nan which is used to give an error message when an operation leads to a floating point underflow like the result of a computation is smaller than the smallest number that can be stored.

QNaN

0 or 1	11111111	00010000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

SNaN

0 or 1	11111111	10000000000001000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

IEEE 754 standard Floating-Point 64 bits

Floating point is represented in a form:

$$
V=(-1)^{s} \times(1 . f)_{2} \times 2^{\text {exponent }-1023}
$$

- Sign for 1 bit is allocated where s determines negative ($\mathrm{s}=$ $1)$ or positive ($\mathrm{s}=0$).
- Mantissa or significand is allocated 52 bits.
- Exponent is allocated 11 bits where the value of bias is 1023.

