Floating point Numbers Computer Mathematics I

Jiraporn Pooksook Department of Electrical and Computer Engineering Naresuan University

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FIXED POINT NOTATION

In Fixed Point Notation, the number is stored as a signed integer in two's complement format.

The radix point is the separator between integer and fractional parts.

signed integer . fractional

$$\begin{array}{l} 0001.0110 = + \\ 0 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} \\ = 1 + 1/4 + 1/8 = 1.375 \\ 1111.0000 => (110 + 001 = 111) = \\ 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} \\ = -1 \\ 1100.0100 => (011 + 001 = 100) = \\ 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} \\ = -4.25 \end{array}$$

FLOATING POINT NOTATION

Floating Point Representation is based on Scientific Notation.

- Significant (mantissa)
- ► Base
- ► Exponent

It is written in a form:

 $+/-mantissa \times Base^{Exponent}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Example: $123.45 = 1.2345 \times 10^2$ $= 12.345 \times 10^1$ $= 1234.5 \times 10^{-1}$

NORMALISED SCIENTIFIC NOTATION

We choose an exponent so that the absolute value of the mantissa remains greater than or equal to 1 but less than the number base.

Example: $500.0 = 5.0 \times 10^{2}$ $10.1_{2} = 1.01 \times 2^{1}$ $0.111_{2} = 1.11 \times 2^{-1}$

A binary number can be expressed in scientific scientific notation in several ways like decimal numbers. $0.110010 \times 2^5 = 0.78125 \times 32 = 25$ $1.10010 \times 2^4 = 1.5625 \times 16 = 25$ $11.0010 \times 2^3 = 3.125 \times 8 = 25$ $110.010 \times 2^2 = 6.25 \times 4 = 25$ $1100.10 \times 2^1 = 12.5 \times 2 = 25$ $11001.0 \times 2^0 = 25 \times 1 = 25$

FIXED POINT VS FLOATING POINT

Fixed point allows calculations over a wide range of magnitudes. Example: $0.22 \times 0.22 = 0.0484$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fixed point: $0.220 \times 0.220 = 0.048$

Floating point: $(2.2 \times 10^{-1}) \times (2.2 \times 10^{-1}) = 4.84 \times 10^{-2}$

Floating point is represented in a form:

 $V = (-1)^s \times M \times 2^E$

- The sign s determines whether the number is negative (s = 1) or positive (s = 0).
- ► The significand M is a fractional binary number that M is either 1≤M≤2 or 0≤M≤1.
- The exponent E weights the value by a (possibly negative) power of 2 and it is stored in the two's complement format.
- The bit representation of a floating point number is divided into three fields to encode these values:
 - the single sign bit s directly code the sign s.
 - the k-bit exponent field $\exp = e_{k-1} \dots e_1 e_0$ encodes the exponent E.
 - ► the n-bit fraction field frac= f_{n-1}...f₁f₀ encodes the significand M, but the value encoded also depends on whether or not the exponent field equals 0.

Figure 2.31 Standard floating-point formats. Floating-point numbers are represented by three fields. For the two most common formats, these are packed in 32-bit (single precision) or 64-bit (double precision) words.

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

The value encoded by a given bit representation can be divided into three different cases (the latter having two variants), depending on the value of exp.

Figure 2.32 Categories of single-precision, floating-point values. The value of the exponent determines whether the number is (1) normalized, (2) denormalized, or a (3) special value.

Sac

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

Case 1: Normalized values

It occurs when the bit pattern of exp is neither all zeros nor all ones. In this case, the exponent field is interpreted as representing a signed integer in biased form.

► E = e - Bias where e is the unsigned number having bit representation $e_{k-1} \dots e_1 e_0$, and Bias is a bias value equal to $2^{k-1} - 1$

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

- ▶ $0 \le f \le 1$, having binary representation $0.f_{n-1} \dots f_1 f_0$
- ► M = 1 + f so M is in the range [1,2)

Example: 8-bit floating-point format, k = 4 exponent bits n = 3 fraction bits, the bias is 7. bit representation= 0 0110 110

- $\blacktriangleright e = 6$
- ► E = 6-7 = -1
- ► f = 6/8
- M = 1 + f = 14/8
- V = M $\times 2^{E}$ = 14/8 $\times 1/2$ = 0.875

Case 2: Denormalized values

It occurs when the exponent field is all zeros. In this case, the exponent value is E = 1-Bias, and the significand value is M = f.

- E = 1 Bias where Bias is a bias value equal to $2^{k-1} 1$
- $0 \le f \le 1$, having binary representation $0.f_{n-1} \dots f_1 f_0$
- ► M = f

Example: 8-bit floating-point format, k = 4 exponent bits n = 3 fraction bits, the bias is 7. bit representation= 0 0000 000

•
$$M = f = 0/8$$

•
$$V = M \times 2^E = 0/8 \times 1/64 = 0.0$$

Case 3: Special values

It occurs when the exponent field is all ones.

- when the fraction field is all zeros, the resulting values represent infinity, either $+\infty$ when s=0 or $-\infty$ when s=1.
- when the fraction field is nonzero, the resulting value is called a "NaN," short for "Not a Number." Such values are returned as the result of an operation where the result cannot be given as a real number or as infinity.

-	Bit representation		Exponent		Fraction		Value		
Description		е	Ε	2^E	f	М	$2^E \times M$	V_{-}	Decimal
Zero	0 0000 000	0	-6	1 64	08	0 8	0	0	0.0
Smallest pos.	0 0000 001	0	-6	$\frac{1}{64}$	$\frac{1}{8}$	18	1 512	$\frac{1}{512}$	0.001953
	0 0000 010	0	-6	$\frac{1}{64}$	28	28	$\frac{2}{512}$	$\frac{1}{256}$	0.003906
	0 0000 011	0	-6	$\frac{1}{64}$	38	38	3 512	$\frac{3}{512}$	0.005859
Largest denorm.	: 0 0000 111	0	-6	$\frac{1}{64}$	78	78	$\frac{7}{512}$	$\frac{7}{512}$	0.013672
Smallest norm.	0 0001 000	1	-6	$\frac{1}{64}$	08	88	8	$\frac{1}{64}$	0.015625
	0 0001 001	1	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{9}{8}$	9 512	9 512	0.017578
	: 0 0110 110	6	-1	$\frac{1}{2}$	68	14	14	78	0.875
	0 0110 111	6	-1	$\frac{1}{2}$	78	15 8	15	15	0.9375
One	0 0111 000	7	0	1	08	88	88	1	1.0
	0 0111 001	7	0	1	18	98	98	<u>9</u>	1.125
	0 0111 010	7	0	1	28	10 8	$\frac{10}{8}$	$\frac{5}{4}$	1.25
	0 1110 110	14	7	128	6	14	1792	224	224.0

Figure: Retrieved from Computer systems : a programmer's perspective / Randal E. Bryant, David R. O'Hallaron.-2nd ed.

IEEE 754 STANDARD FLOATING-POINT 32 BITS Floating point is represented in a form:

 $V = (-1)^{s} \times (1.f)_{2} \times 2^{exponent-127}$

- Sign for 1 bit is allocated where s determines negative (s = 1) or positive (s = 0).
- Mantissa or significand is allocated 23 bits.
- Exponent is allocated 8 bits where the value of bias is 127. Thus a stored value -127 means that exponent = 0.

bo	b1 b2 b3 t	18	b9 b10 b11b30 b31
Sign	Exponent		Significand

Figure: Retrieved from IEEE Standard for Floating Point Numbers,V Rajaraman

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

IEEE 754 STANDARD FLOATING-POINT 32 BITS Example: Represent 52.21875 in 32-bits IEEE 754 standard

- ▶ bit representation 52.21875 = 110100.00111
- ► $52.21875 = 1.1010000111 \times 2^5$
- ► Normalized significand = .1010000111
- ► Exponent (e-127) = 5
- ► Hence e = 132

Therefore the bit representation in IEEE 754 format is

0	10000100	101000011100000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

Figure: Retrieved from IEEE Standard for Floating Point Numbers, V Rajaraman

IEEE 754 STANDARD FLOATING-POINT 32 BITS

Representation of zero: Zero is represented in the IEEE Standard by all 0s for the exponent and all 0s for the significand.

+0

0	00000000	000000000000000000000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

-0

1	00000000	000000000000000000000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

Figure: Retrieved from IEEE Standard for Floating Point Numbers,V Rajaraman

IEEE 754 STANDARD FLOATING-POINT 32 BITS Representation of infinity: All 1s in the exponent field is assumed to represent infinity.

 ∞ +

0	11111111	000000000000000000000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

-00

1	11111111	000000000000000000000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

Figure: Retrieved from IEEE Standard for Floating Point Numbers, V Rajaraman

IEEE 754 STANDARD FLOATING-POINT 32 BITS

Representation of Non Numbers:

- Quiet NaN which is used when the result of an operation is not defined such as 0/0.
- Signalling Nan which is used to give an error message when an operation leads to a floating point underflow like the result of a computation is smaller than the smallest number that can be stored.

QNaN

0 or 1	11111111	000100000000000000000000000000000000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

SNaN

0 or 1	11111111	100000000000100000000
Sign	Exponent	Significand
1 bit	8 bits	23 bits

IEEE 754 STANDARD FLOATING-POINT 64 BITS

Floating point is represented in a form:

$$V = (-1)^s \times (1.f)_2 \times 2^{exponent-1023}$$

- Sign for 1 bit is allocated where s determines negative (s = 1) or positive (s = 0).
- Mantissa or significand is allocated 52 bits.
- Exponent is allocated 11 bits where the value of bias is 1023.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □