Ch4: Basic Operators

305172 Computer Programming
Laboratory
Jiraporn Pooksook
Naresuan University

Arithmetic Operators

Operator	Name	Example
+	Addition	$2+3$
-	Subtraction	$2-3$
*	Multiplication	$2 * 3$
/	Division	2 / 3
\%	Modulus	$2 \% 3$
**	Exponentiation	$2 * * 3$
//	Floor Division	$10 / / 3$

Assignments Operators

Operator	Example	Same as
$x=5$	$x=5$	$x=5$
$+=$	$x+=3$	$x=x+3$
==	$x-=3$	$x=x-3$
=	$x^{}=3$	$x=x * 3$
/=	$x /=3$	$x=x / 3$
\%=	$x \%=3$	$x=x \% 3$
//=	$x / /=3$	$x=x / / 3$
$* *=$	$x * *=3$	$x=x * * 3$

Bitwise Operators

Operator	Name	Description	Example
\&	Bitwise AND	Each bit of the output is 1 if the corresponding bit of x AND of y is 1 , otherwise it's 0 .	$5 \& 3=1$
\|	Bitwise OR	Each bit of the output is 0 if the corresponding bit of x AND of y is 0 , otherwise it's 1 .	5\|3-7
\sim	Bitwise NOT	Returns the complement of x - the number you get by switching each 1 for a 0 and each 0 for a 1 . This is the same as $-\mathrm{x}-1$.	$\sim 5=-6$
\wedge	Bitwise XOR	Each bit of the output is the same as the corresponding bit in x if that bit in y is 0 , and it's the complement of the bit in x if that bit in y is 1 .	$5^{\wedge} 3=6$
>>	Left shift	Returns x with the bits shifted to the left by y places (and new bits on the right-hand-side are zeros).	$5 \gg 3=0$
<<	Right shift	Returns x with the bits shifted to the right by y places. This is the same as multiplying x by $2^{* *} y$.	$5 \ll 3=40$

Assignment Bitwise Operators

Operator	Example	Same as
$\&=$	$x \&=3$	$x=x \& 3$
$1=$	$x \mid=3$	$x=x \mid 3$
$\wedge=$	$x^{\wedge}=3$	$x=x^{\wedge} 3$
$\gg=$	$x \gg=3$	$x=x \gg 3$
$\ll=$	$x \ll=3$	$x=x \ll 3$

