Ch12: Quick Sort

305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Quick sort

* Worst-case running time is O(»°) on an input
array of n numbers.

* Expected running time is O(nlgn)

* Based on the divide and conquer paradigm.

Quicksort(A, p,r)

ifp<r
then g = Partition(A,p,r)
Quicksort(A,p, g-1)
Quicksort(A, g+1, r)

Partition(A,p,r)

To partition data is to divide it into two
groups

One group contains items with a key value
higher than the reference value.

The other group contains items with a key
value lower than the reference value.

A reference value is also called a pivot value

Partition(A, p,r)

X = A[r]
| = p-1
forj=ptor-1
do if A[j] <= x

theni=i+1

exchange A[i]and A[j]
exchange A[i+1] and A[r]
return i+1

Example: Partition(A,1,8)

r

i P J

2 | 8 | 7 1 3 5 6

2<4
exchange P
i+1,]

2 | 8 | 7 1 3 5 6

2 | 8 | 7 1 3 5 6

r
r

Example: Partition(A,1,8)

1<4
exchange

i+1,r i j
8,1

1 3 8 /7 | 5

3<4
exchange

i+1,r
7,3

Example: Partition(A,1,8)

2 1

p

2 1

p

2 1 5 6 | 8

exchange
i+1, r

Analyzing Partition(A,p,r)

i J r

Analyzing Partition(A,p,r)

Loop invariants with Partition(A,p, r)

loop invariant =
before running each loop for any array index k,
the following conditions hold:

theoretically

1. p<k<i, then A[k] £x
2. 1fi+1 <k £j-1, then A[k] > x
Initialization: 3. If k=r then A

Before running loop 0, i = p-1 and j=p

Condition 1 : there is no value between p and |,
Condition 2: there is no value between i+1 and j-1
Condition 3: line 1 x = A[K]

Hence all 3 conditions hold. (True!!)

Maintenance: l

When A[j]l<=x, i increases and A[i], A[j] are swapped. Then j increases. Condition 1 satisfies.
When A[j] >=x, j increases. Then condition 2 satisfies.

Condition 3 satisfies from the 15t line.

Hence all 3 conditions hold. (True!!)

Termination:
At termination j =, the array has partitioned into 3 sets following above conditions. (True!!)

The running time of Quicksort

* Worst-case partitioning
— Partition with n-1 elements and 0 elements.
IT'(n)=T(n-1)+0(n)
— The running time is ©(n?)
* Best-case partitioning
— Partition with the floor of n/2 elements
T'(n)<2T(n/2)+0O(n)
— The running time is O(nlgn)

The running time of Quicksort

Balanced partitioning

Average running time is closer to the best-case
running time.

For example, partition 9-to-1 proportional

split.
I'(n)<TOn/10)+T(n/10)+cn

The running time is ®(nlgn)

The intuition of the average case
running time

1/10 n 9/10n .

N M

1/100 n 9/100 n 9/100 n 91/100n ~.cn

’ \ , \
’ AY 7 AY
’ N 7 \
l// A L/ \J
|

5 81/1000 n 729/1000 n.,

"\
1 ---> <Ch

O(nlgn)

Randomized version of Quicksort

Randomized-Partition(A,p,r)
i = Random(p,r)

exchange A[r] and A[i]

return Partition(A,p,r)

Randomized-Quicksort(A,p,r)
ifp<r
then g = Randomized-Partition(A,p,r)
Randomized-Quicksort(A,p, g-1)
Randomized-Quicksort(A, g+1, r)

Wrapping-up Sorting algorithms
wgorthm |Tme | Note

Insertion sort O(n?) In-place memory
Notoriously slow

Merge sort O(nlg n) Linear extra memory
Fast(good for large input)

Heap sort O(nlg n) In-place memory
Fast (worst case is O(n Ig n)

Quick sort O(nlg n) In-place memory
Fastest (optimal for large input
but worst case can be O(n?))

Practice: Quicksort

16 | 14 ' 51| 2 | 15|19 17 | 13

