
Ch12: Quick Sort

305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Quick sort

• Worst-case running time is on an input
array of n numbers.

• Expected running time is
• Based on the divide and conquer paradigm.

)(2n

)lg(nn

Quicksort(A, p,r)

if p < r
then q = Partition(A,p,r)

Quicksort(A,p, q-1)
Quicksort(A, q+1 , r)

Partition(A,p,r)

• To partition data is to divide it into two
groups

• One group contains items with a key value
higher than the reference value.

• The other group contains items with a key
value lower than the reference value.

• A reference value is also called a pivot value

Partition(A, p,r)

x = A[r]
i = p-1
for j = p to r-1

do if A[j] <= x
then i = i +1
exchange A[i] and A[j]

exchange A[i+1] and A[r]
return i+1

Example: Partition(A,1,8)

8 7 312 5 6 4

i p j r

8 7 312 5 6 4

jp i r

8 7 312 5 6 4

jp i r

pivot

2 < 4
exchange

i+1,j

8 > 4

Example: Partition(A,1,8)

8 7 312 5 6 4

jp i r

1 7 382 5 6 4

jp ri

1 3 782 5 6 4

jp ri

7 > 4

1 < 4
exchange

i+1,r
8, 1

3 < 4
exchange

i+1,r
7, 3

Example: Partition(A,1,8)

1 3 782 5 6 4

jp ri

1 3 782 5 6 4

p i r

1 3 742 5 6 8

p i r

5 > 4

6 > 4

exchange
i+1, r

Analyzing Partition(A,p,r)

>x pivot

p i j r

≤ x > x

pivot

p i j r

≤ x > x

Analyzing Partition(A,p,r)

≤ x pivot

p i j r

≤ x > x

pivot

p i j r

≤ x > x

Loop invariants with Partition(A,p, r)
loop invariant =
before running each loop for any array index k,
the following conditions hold:
1. p ≤ k ≤ i, then A[k] ≤ x
2. If i+1 ≤ k ≤ j-1, then A[k] > x
3. If k=r then A[k] = x

theoretically

Initialization:
Before running loop 0 , i = p-1 and j=p
Condition 1 : there is no value between p and i,
Condition 2: there is no value between i+1 and j-1
Condition 3: line 1 x = A[k]
Hence all 3 conditions hold. (True!!)

Maintenance:
When A[j]<=x, i increases and A[i], A[j] are swapped. Then j increases. Condition 1 satisfies.
When A[j] >= x, j increases. Then condition 2 satisfies.
Condition 3 satisfies from the 1st line.
Hence all 3 conditions hold. (True!!)

Termination:
At termination j = r, the array has partitioned into 3 sets following above conditions. (True!!)

The running time of Quicksort

• Worst-case partitioning
– Partition with n-1 elements and 0 elements.

– The running time is

• Best-case partitioning
– Partition with the floor of n/2 elements

– The running time is

)()1()(nnTnT 
)(2n

)()2/(2)(nnTnT 
)lg(nn

The running time of Quicksort

• Balanced partitioning
• Average running time is closer to the best-case

running time.
• For example, partition 9-to-1 proportional

split.

• The running time is

cnnTnTnT )10/()10/9()(

)lg(nn

The intuition of the average case
running time

n

1/10 n 9/10 n

1/100 n 9/100 n 9/100 n 91/100 n

1 81/1000 n 729/1000 n

lg 10/9 n

cn

cn

cn

cn

1 ≤cn

)lg(nnO

lg 10 n

Randomized version of Quicksort
Randomized-Partition(A,p,r)
i = Random(p,r)
exchange A[r] and A[i]
return Partition(A,p,r)

Randomized-Quicksort(A,p,r)
if p < r

then q = Randomized-Partition(A,p,r)
Randomized-Quicksort(A,p, q-1)
Randomized-Quicksort(A, q+1 , r)

Wrapping-up Sorting algorithms

Algorithm Time Note

Insertion sort O(n2) In-place memory
Notoriously slow

Merge sort O(n lg n) Linear extra memory
Fast(good for large input)

Heap sort O(n lg n) In-place memory
Fast (worst case is O(n lg n)

Quick sort O(n lg n) In-place memory
Fastest (optimal for large input
but worst case can be O(n2))

Practice: Quicksort

14 51 15216 19 17 13

