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Quick sort

• Worst-case running time is             on an input 
array of n numbers.

• Expected running time is 
• Based on the divide and conquer paradigm.
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Quicksort(A, p,r)

if p < r
then q = Partition(A,p,r)

Quicksort(A,p, q-1)
Quicksort(A, q+1 , r)



Partition(A,p,r)

• To partition data is to divide it into two 
groups

• One group contains items with a key value 
higher than the reference value.

• The other group contains items with a key 
value lower than the reference value.

• A reference value is also called a pivot value



Partition(A, p,r)

x = A[r]
i = p-1
for j = p to r-1

do if A[j] <= x
then i = i +1
exchange A[ i ] and A[ j ]

exchange A[i+1] and A[r]
return i+1



Example: Partition(A,1,8)

8 7 312 5 6 4

i p    j r

8 7 312 5 6 4

jp   i r

8 7 312 5 6 4

jp    i r

pivot

2 < 4
exchange 

i+1,j

8 > 4



Example: Partition(A,1,8)

8 7 312 5 6 4

jp    i r

1 7 382 5 6 4

jp ri

1 3 782 5 6 4

jp ri

7 > 4

1 < 4
exchange 

i+1,r
8, 1

3 < 4
exchange 

i+1,r
7, 3



Example: Partition(A,1,8)

1 3 782 5 6 4

jp ri

1 3 782 5 6 4

p i r

1 3 742 5 6 8

p i r

5 > 4

6 > 4

exchange 
i+1, r



Analyzing Partition(A,p,r)

>x pivot

p i j r

≤ x > x

pivot

p i j r

≤ x > x



Analyzing Partition(A,p,r)

≤ x pivot

p i j r

≤ x > x

pivot

p i j r

≤ x > x



Loop invariants with Partition(A,p, r)
loop invariant = 
before running each loop for any array index k, 
the following conditions hold:
1.  p ≤ k ≤ i, then A[k] ≤ x
2. If i+1 ≤ k ≤ j-1, then A[k] > x
3. If k=r then A[k] = x 

theoretically

Initialization: 
Before running loop 0 , i = p-1 and j=p 
Condition 1 : there is no value between p and i, 
Condition 2: there is no value between  i+1 and j-1
Condition 3: line 1 x = A[k] 
Hence all 3 conditions hold. (True!!)

Maintenance:
When A[j]<=x, i increases and A[i], A[j] are swapped. Then j increases. Condition 1 satisfies.
When A[j] >= x, j increases. Then condition 2 satisfies.
Condition 3 satisfies from the 1st line.
Hence all 3 conditions hold. (True!!)

Termination:
At termination j = r, the array has partitioned into 3 sets following above conditions. (True!!)



The running time of Quicksort

• Worst-case partitioning
– Partition with n-1 elements and 0 elements.

– The running time is 

• Best-case partitioning
– Partition with the floor of n/2 elements

– The running time is 

)()1()( nnTnT 
)( 2n

)()2/(2)( nnTnT 
)lg( nn



The running time of Quicksort

• Balanced partitioning
• Average running time is closer to the best-case 

running time.
• For example, partition 9-to-1 proportional 

split.

• The running time is
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The intuition of the average case 
running time 

n

1/10 n 9/10 n

1/100 n 9/100 n 9/100 n 91/100 n

1 81/1000 n 729/1000 n
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Randomized version of Quicksort
Randomized-Partition(A,p,r)
i = Random(p,r)
exchange A[r] and A[i]
return Partition(A,p,r)

Randomized-Quicksort(A,p,r)
if p < r

then q = Randomized-Partition(A,p,r)
Randomized-Quicksort(A,p, q-1)
Randomized-Quicksort(A, q+1 , r)



Wrapping-up Sorting algorithms

Algorithm Time Note

Insertion sort O(n2) In-place memory
Notoriously slow

Merge sort O(n lg n) Linear extra memory
Fast( good for large input)

Heap sort O(n lg n) In-place memory
Fast  (worst case is O(n lg n)

Quick sort O(n lg n) In-place memory
Fastest (optimal for large input 
but worst case can be O(n2) )



Practice: Quicksort

14 51 15216 19 17 13


