Ch13: Sorting in Linear Time

305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Comparison sorts

- The sorted order they determine is based only on comparisons between the input elements.
- Any comparison sort must make $\Omega(n \lg n)$ comparisons in the worst case to sort n elements.

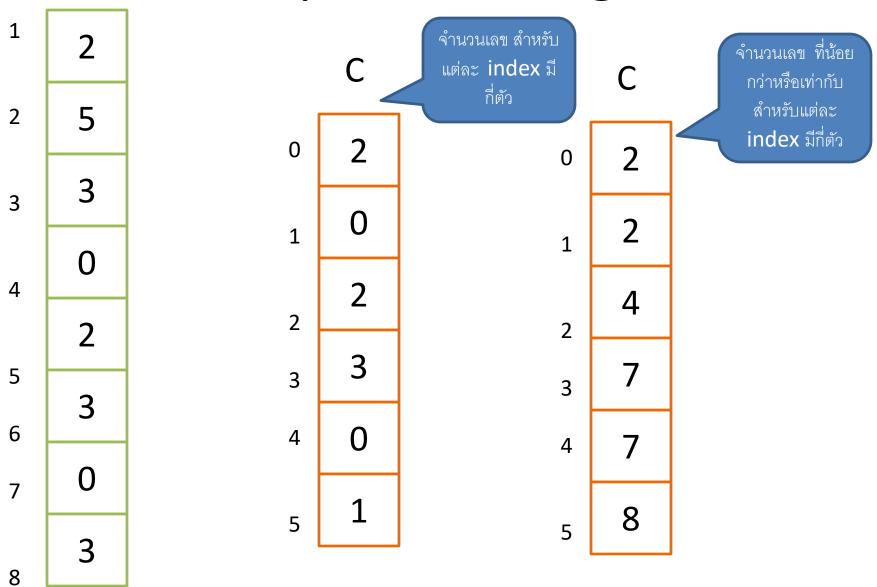
Counting Sort(A,B,k)

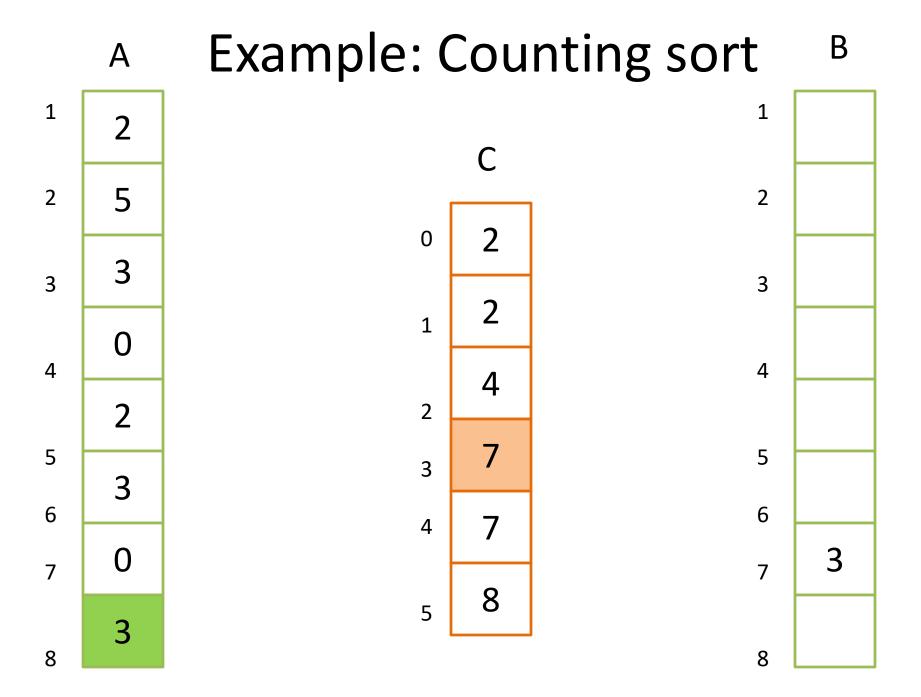
```
for i=0 to k
      do C[i] = 0
for j=1 to length[A]
      do C[A[i]] = C[A[i]]+1
for i = 1 to k
      do C[i] = C[i] + C[i-1]
for j=length[A] downto 1
      do B[C[A[ j ]]] = A[ j ]
      C[A[j]] = C[A[j]] -1
```

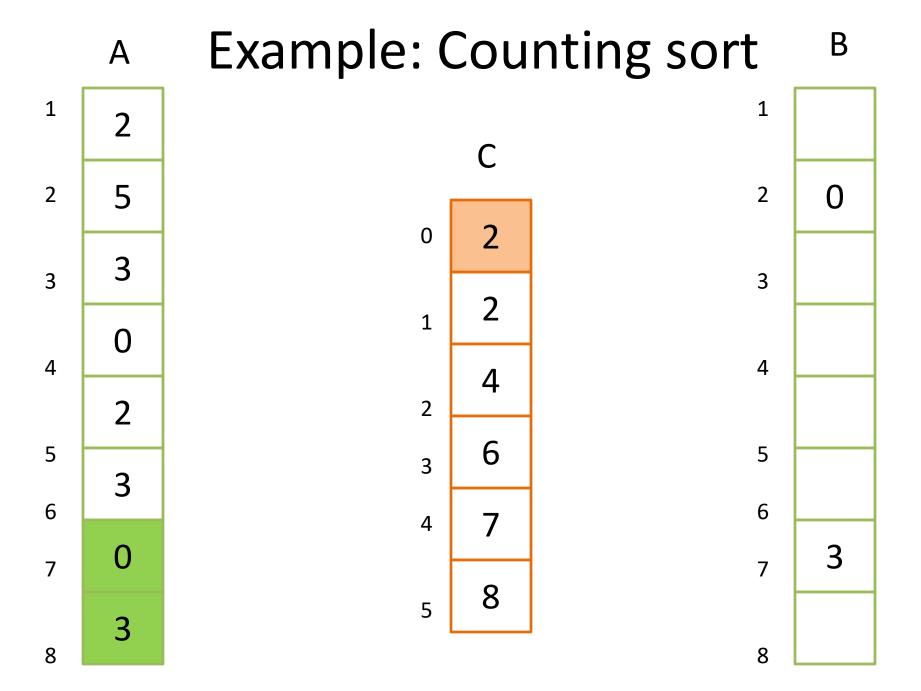
Analyze Counting Sort

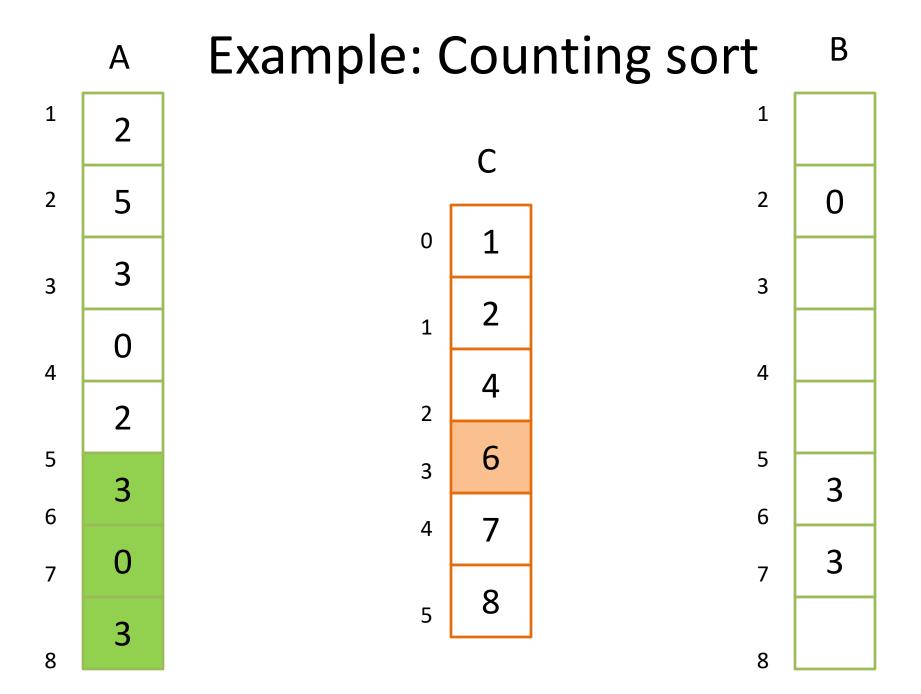
- Assume that each of the n input elements is an integer in the range 0 to k, for some integer k.
- Line 1-2, takes time $\Theta(k)$
- Line 3-4 takes time $\Theta(n)$
- Line 5-6 takes time $\Theta(k)$
- Line 7-9 takes time $\Theta(n)$
- Overall, the sort runs in $\Theta(k+n)$ time.
- When we have k = O(n) then the running time is $\Theta(n)$

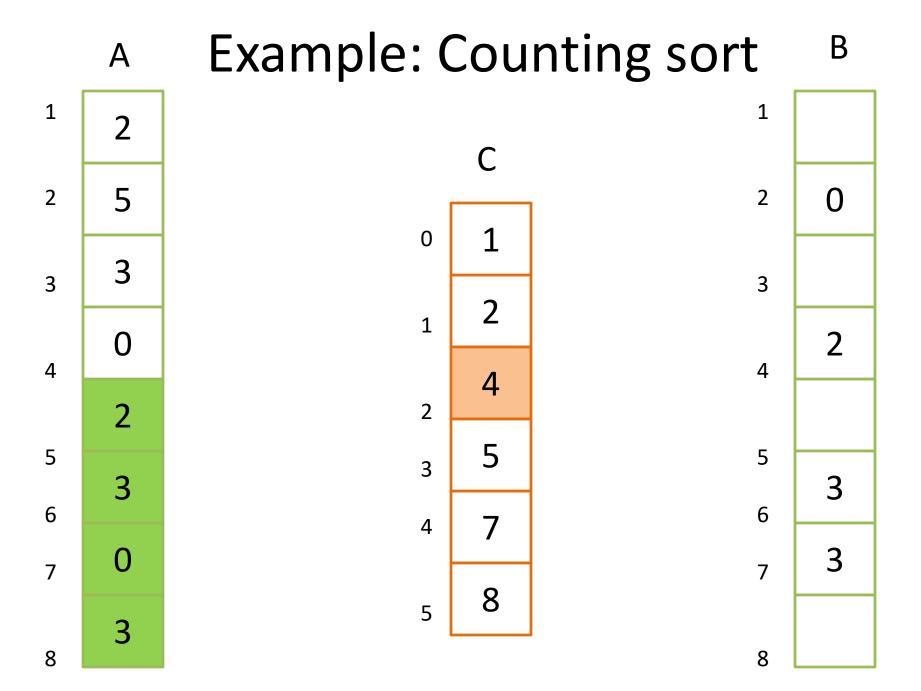
A Example: Counting sort

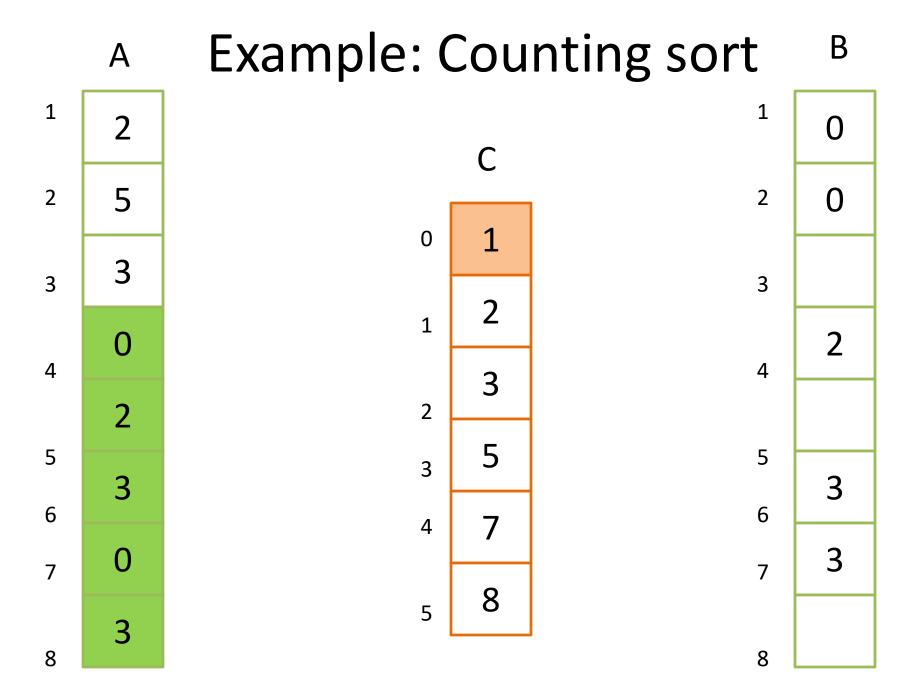


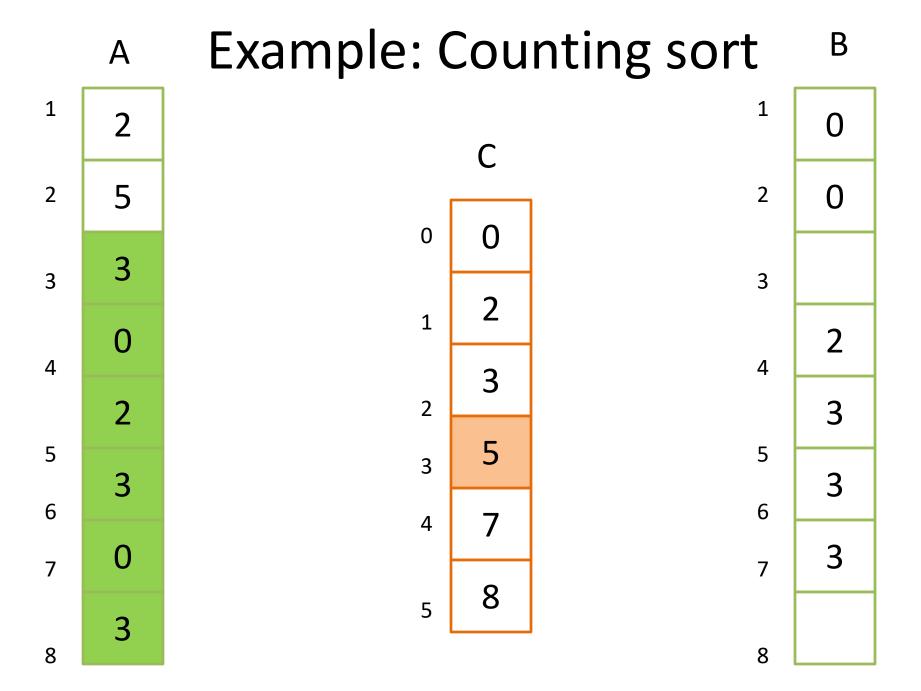


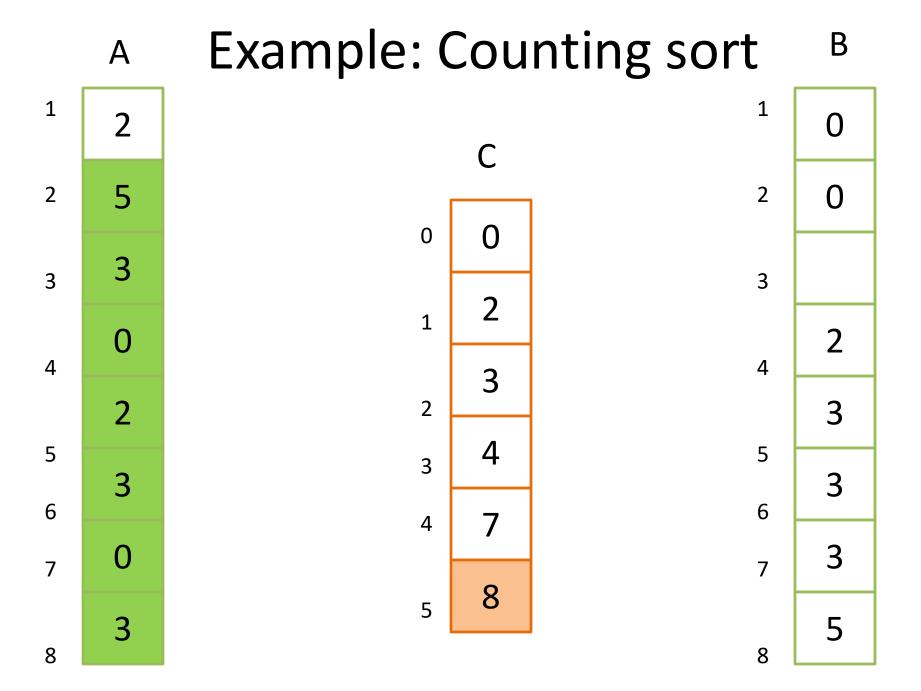












Example: Counting sort В

Counting sort

- Counting sort is stable.
 - numbers with the same value appear in the output array in th same order as they do in the input array

Radix Sort

- An algorithm used by the card-sorting machines.
- The digit sorts in this algorithm stable.
- Typically a sequential random-access machine sometimes uses radix sort to records of information that are keyed by multiple fields such as sorting dates by three keys: year, month and day.

Radix Sort

for i = 1 to d // d is the highest-order digit do use a stable sort to sort array A on digit i

Example: Radix sort

3	2	9	7	2	0
4	5	7	3	5	5
6	5	7	4	3	6
8	3	9	4	5	7
4	3	6	6	5	7
7	2	0	3	2	9
3	5	5	8	3	9

Example: Radix sort

7	2	0
3	5	5
4	3	6
4	5	7
6	5	7
3	2	9
8	3	9

7	2	0
3	2	9
4	3	6
8	3	9
3	5	5
4	5	7
6	5	7

Example: Radix sort

7	2	0	
3	2	9	
4	3	6	
8	3	9	
3	5	5	
4	5	7	
6	5	7	

3	2	9
3	5	5
4	3	6
4	5	7
6	5	7
7	2	0
8	3	9

Analyze Radix Sort

- When each digit is in the range 0 to k-1 and k is not too large, counting sort is an obvious choice.
- Each pass over n d-digit numbers then takes time

$$\Theta(n+k)$$

- There are d passes , then the total time of radix sort is $\Theta(d(n+k))$
- When d is a constant and k = O(n), radix sort runs in linear time.
- Given n b-bit number and any positive integer r ≤ b, radix sort sorts these numbers in

$$\Theta((b/r)(n+2^r))$$

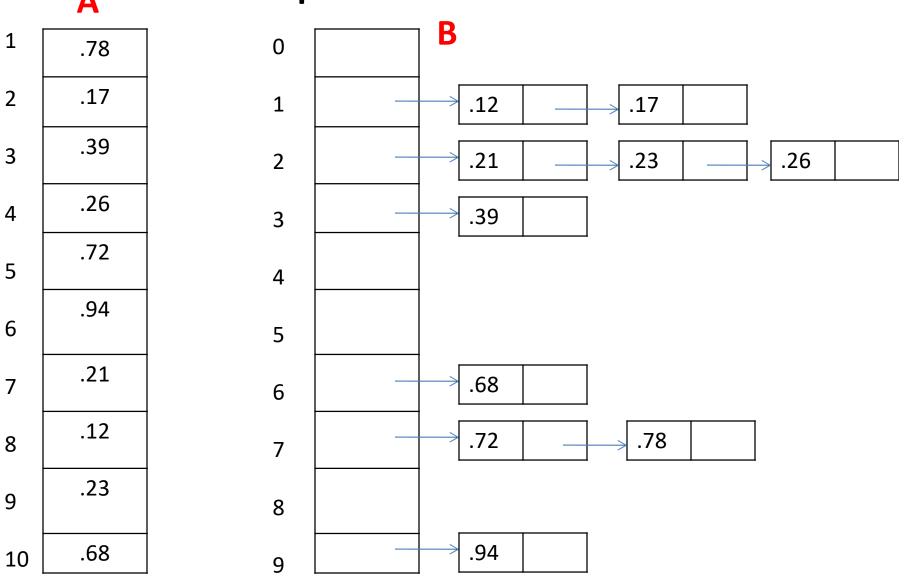
Bucket Sort

- Assume that the input is generated by a random process that distributes elements uniformly over the interval [0,1).
- Divide the interval [0,1) into n equal-sized subintervals, or buckets.
- Distribute the n input numbers into the buckets.
- Sort the numbers in each bucket and go through the buckets in order; listing the elements in each.

Bucket-Sort(A)

```
n = length[A]
for i = 1 to n
   do insert A[i] into list B[\lfloor nA[i] \rfloor]
for i = 0 to n-1
   do sort list B[i] with insertion sort concatenate the lists B[0], B[1], ..., B[n-1] together in order.
```

Example: Bucket-sort



Analyze Bucket-sort

- The running time depends on line 5.
- Analyze the cost of calling insertion sort in line
 5 and the number of expected time we call insertion sort is 2 -1/n
- Hence the running time of bucket sort is

$$T(n) = \Theta(n) + n.O(2 - 1/n) = \Theta(n)$$

Practice: Counting sort