Ch16: Hash Tables

305234 Algorithm Analysis and Design Jiraporn Pooksook Naresuan University

Dictionaries: Abstract Data Type

- Dictionaries (Abstract Data Type) is to maintain set of items, each with a key
 - INSERT(item)
 - DELETE(item)
 - SEARCH(key) -> return item with given key or report does not exist
- A has table is an effective data structure for implementing dictionaries.
- Worst case time for searching is O(n) but its expected time is O(1).

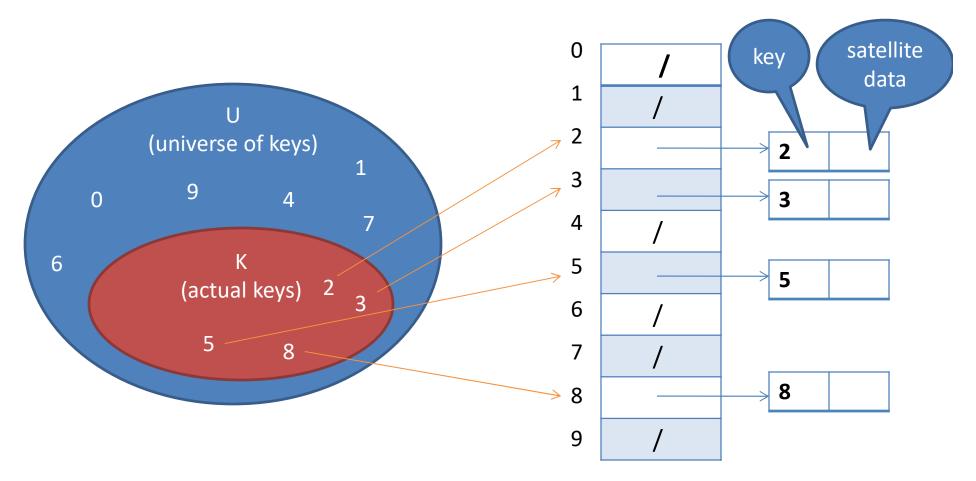
Dictionaries in Python

- D={1234: 'Bob',
 5678, 'Alice'}
- Search by D[key]
- Insert by D[key] = value
 D[5678]='Robert'
- Delete by D[key]
 del D[1234]

Direct-Address Tables

- A set of keys is in a set of universe U = {0,1,...,m-1} where m is not too large.
- A direct-address table is an array denoted by T[0..m-1] in which each position, or slot, corresponds to a key in the universe U.

Direct-Address Table



Direct-Address Tables

DIRECT-ADDRESS-SEARCH(T, k) return T[k]

DIRECT-ADDRESS-INSERT(T, x) T[key[x]] = x

DIRECT-ADDRESS-DELETE (T, k) T[key[x]] = NIL

Each operation takes only O(1) time.

Disadvantages of Direct-addressing

- Keys may not be non-negative integers.
- Direct-address tables require a large size of memory.
 - If the universe U is large, we have to store a table
 T of size U.

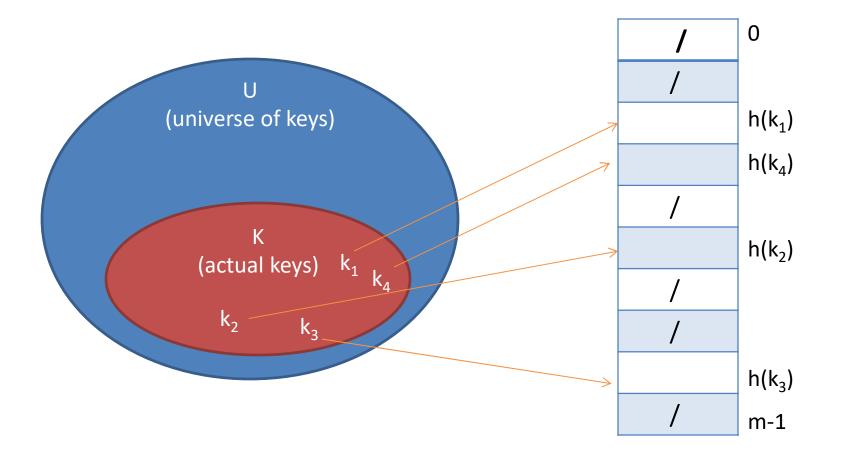
Disadvantages of Direct-addressing

- Keys may not be non-negative integers.
- Solution: using prehash to map key to nonnegative integers.
 - A string of bits represents an integer.
 - In python using function hash(x) means prehash.
- Direct-address tables require a large size of memory.
- Solution: using hashing

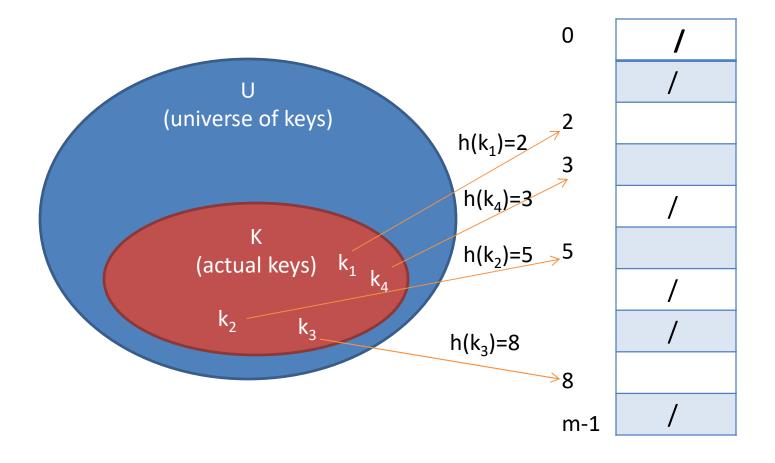
Hash Tables

- We use a hash function h to compute the slot from the key k.
- Hence h maps the universe U of keys into the slots of a hash table T[0..m-1]:
 h: U -> {0,1,...,m-1}
- We say that an element with key k hashes to slot h(k); we also say that h(k) is the hash value of key k.

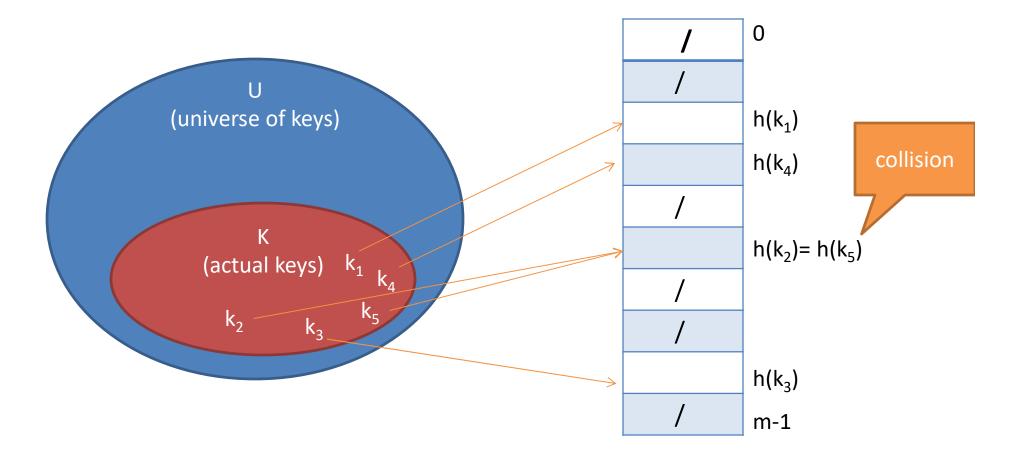
Hash Table



Hash Table



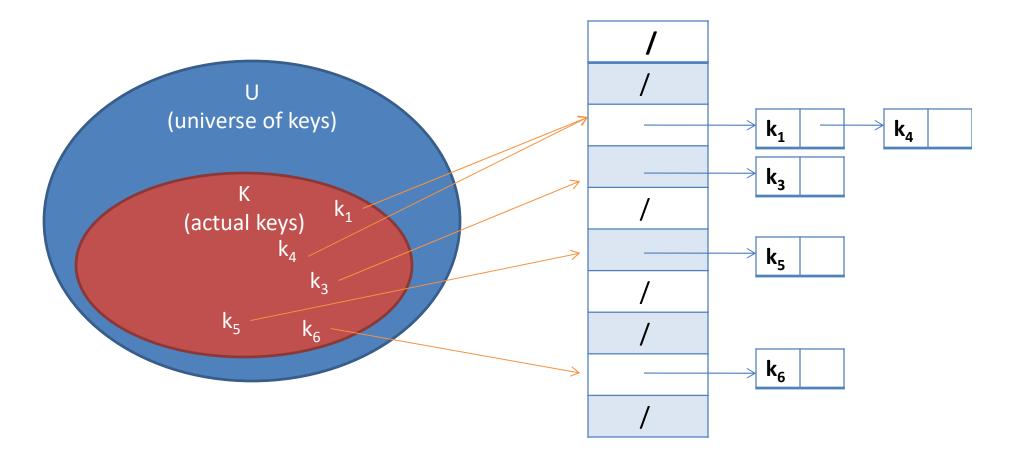
Hash Table

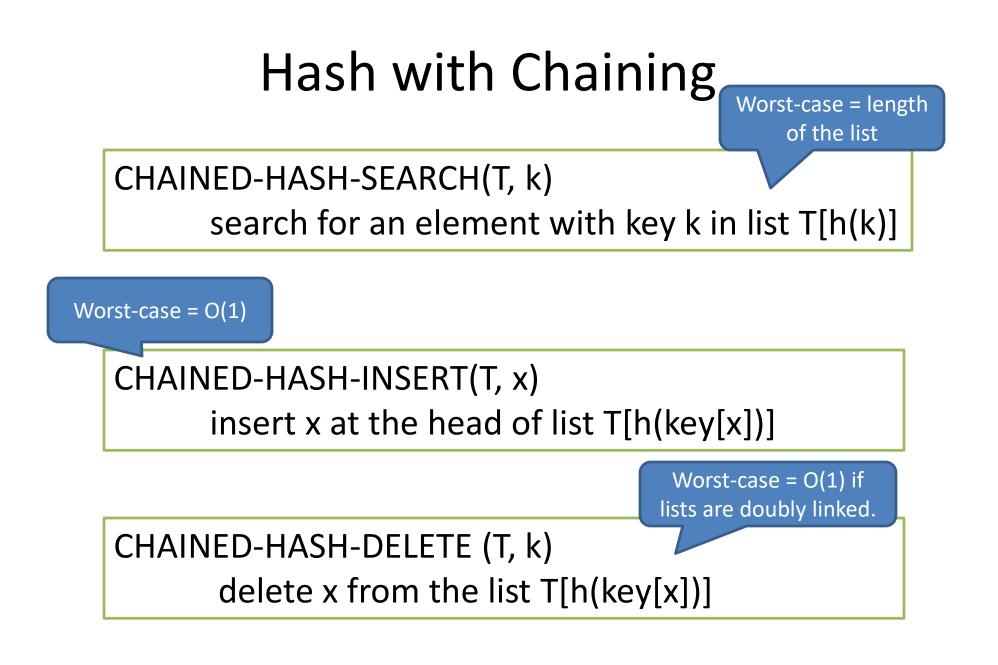


Collision resolution by Chaining

• We put all the elements that hash to the same slot in a linked list.

Hash with Chaining





- Simple uniform hashing is an assumption that any given element is equally likely to hash into any of the m slots independently of where any other element has hashed to.
- For j = 0, 1, ..., m-1. Let us denote the length of the list T[j] by n_j, so that

 $n = n_0 + n_1 + ... + n_{m-1}$

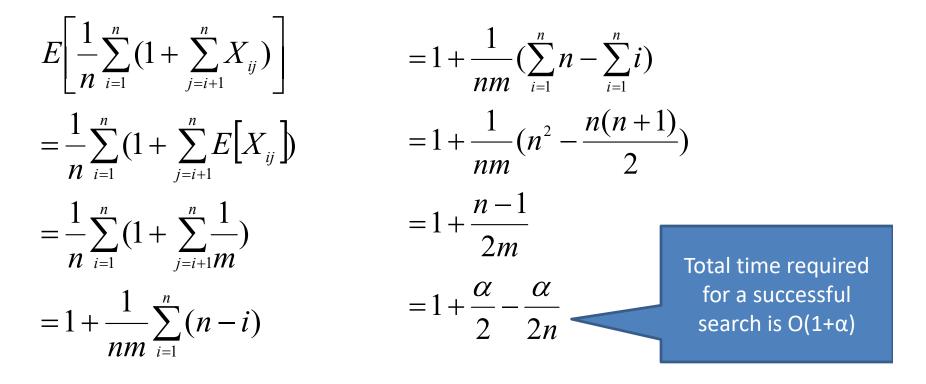
• The average value of n_i is $E[n_i] = \alpha = n/m$

- We assume that the hash value h(k) can be computed in O(1) time, so that the time required to search for an element with key k depends linearly on the length n_{h(k)} of the list T[h(k)].
- We consider two cases:
 - The search is unsuccessful.
 - The search successfully finds an element with key k.

- The expected time to search **unsuccessfully** for a key k is the expected time to search to the end of the list T[h(k)].
- The list T[h(k)] has expected length=E[$n_{h(k)}$] = α
- Hence the expected number of elements examined in unsuccessful search is α, and the total time required (including the time for computing h(k)) = O(1+ α)

- The expected time to search **successfully** for an element x is 1 more than the number of elements that appear before x in x's list.
- Let x_i denote the ith element inserted into the table for i= 1,2,...,n
- Let $k_i = key[x_i]$
- For keys k_i and k_j we define the random variable
 X_{ij} = I{h(k_i)=h(k_j)}
- Under the simple uniform hashing assumption, we have Pr{h(k_i)=h(k_i)} = 1/m, and so E[X_{ii}]= 1/m

 Hence the expected number of elements examined in a successful search is:



- If the number of hash-table slots is at least proportional to the number of elements in the table, we have n = O(m) and, consequently α=n/m = O(m)/m = O(1).
- Searching takes constant time on average.
- All dictionary operations can be supported in O(1) time on average.

Hash Functions

- A good hash function satisfies (approximately) the assumption of simple uniform hashing:
 Each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to.
- It is typically not possible to check this condition.

The Division Method

- For example, if hash table has size m = 12 and key k = 100 then h(k) = 4
- We usually avoid certain values of m. For example m should not be a power of 2.
- A prime is often a good choice for m.

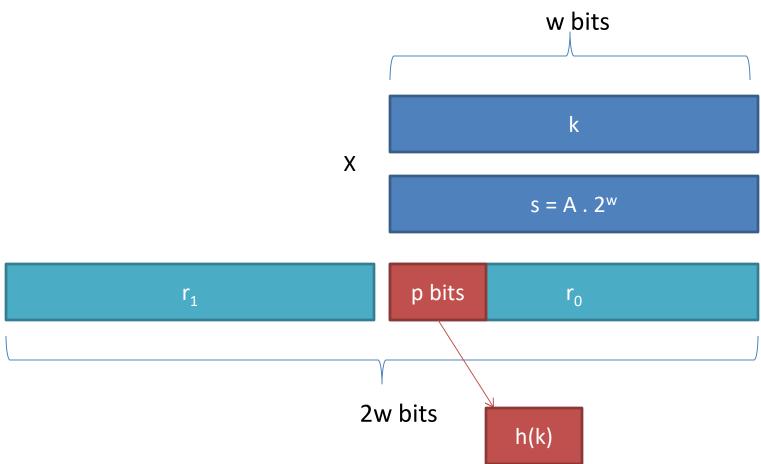
The Multiplication Method

$$h(k) = [m(k A mod 1)]$$

$$h(k) = [(k.A) \mod 2^w] >>(w-p)$$

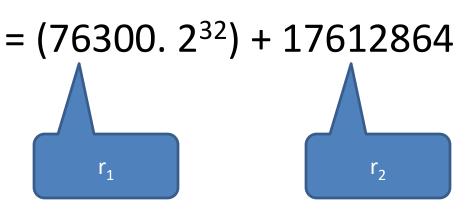
- A is in the range 0 < A < 1, suggest that A = (5^{1/2} -1)/2 = 0.6180339887...
- m = 2^p
- k has w bits.

The Multiplication Method



Example: The Multiplication Method

- k = 123456, p = 14, m = 2¹⁴ = 16384, w = 32
- Hence choose A to be the fraction of the form
 s/ 2³² that is closest to (5^{1/2} -1)/2.
- A = 2654435769
- k.s = 327706022297664



14 most significant bits of r0 yield the value h(k) = 67

Universal Hashing

h(k) = [(ak+b)mod p] mod m

- a , b are randomed and be in {0,1,..,p-1}
- p is a prime which is greater than the size of universe.
- The worst case key k_i != k_j : Pr{h(k_i)= h(k_j)} = 1/m -

Ideal situation of collision

Collision resolution by Open Addressing

- Each table entry contains either an element of the dynamic set or NIL.
 - No chaining and only 1 item per slot
- When searching for an element, we examine table slots until the desired element is found or it is clear that the element is not in the table.
- In open addressing the hash table can fill up so that no further insertions can be made.
- The load factor α can never exceed 1.

- To perform insertion using open addressing, we successively examine, or probe, the hash table until we find an empty slot in which to put the key.
- Instead of being fixed in the order 0,1,...,m-1 the sequence of positions probed depends upon the key being inserted.

• The hash function becomes:

h: U x {0,1,...,m-1} -> {0,1,...,m-1}

For every key k, the probe sequence
 <h(k,0) , h(k,1), ... ,h(k, m-1)>

be a permutation of <0,1,...,m-1>

```
HASH-INSERT (T, k)

i = 0

repeat j = h(k,i)

if T[j] = NIL

then T [j] = k

return j

else i = i+1

until i = m

error "hash table overflow"
```

```
HASH-SEARCH (T, k)

i = 0

repeat j = h(k,i)

if T[j] = k

then return j

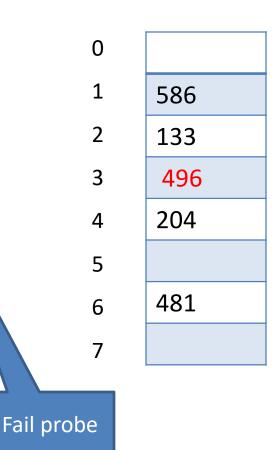
i = i+1

until T[j]=NIL or i = m

return NIL
```

Example: Open Addressing

- insert(586) , h(586,1) = 1
- insert(481) , h(481,1) = 6
- insert(496) , h(496,1) =4
- insert(496) , h(496,2) =1
- insert(496) , h(496,3) =3



Linear Probing

• Given an ordinary hash function

h': U -> {0,1,...,m-1}

- the method of linear probing use the hash function :
 h(k,i) = (h'(k) + i) mod m
- For i = 0,1,...,m-1
- Long runs of occupied slots build up, increasing the average search time!!

Quadratic Probing

Given an ordinary hash function

h': U -> {0,1,...,m-1}

- the method of quadratic probing use the hash function : $h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$
- For i = 0,1,...,m-1 and c₁ and c₂ are not equal to 0.

Double Probing

• Given an ordinary hash function

the method of double probing use the hash function :

 $h(k,i) = (h_1(k) + i h_2(k)) \mod m$

- For i = 0,1,...,m-1 and h₁(k) and h₂(k) are auxiliary hash functions.
- The value h₂(k) must be relatively prime to the hash-table size m.

Analyze Open Addressing

- We have at most one element per slot, thus $n \le m$, which implies $\alpha \le 1$.
- We assume the uniform hashing is used.
- The probe sequence <h(k,0) , h(k,1), ... ,h(k, m-1)> used to insert or search for each key k is equally likely to be any permutation of (0,1,...,m-1).

Analyze Open Addressing

- The expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$
- Thus inserting an element into an opening address hash table with load factor α requires at most 1/(1- α) probes on average, assuming uniform hashing.
- The expected number of probes in a successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$