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Dictionaries: Abstract Data Type

• Dictionaries (Abstract Data Type) is to maintain  
set of items, each with a key
– INSERT(item)
– DELETE(item)
– SEARCH(key)  -> return item with given key or report 

does not exist
• A has table is an effective data structure for 

implementing dictionaries.
• Worst case time for searching is O(n) but its 

expected time is O(1).



Dictionaries in Python

• D={1234: ‘Bob’,
5678, ‘Alice’} 

• Search by D[key] 
• Insert by D[key] = value

– D[5678]=‘Robert’ 

• Delete by D[key]
– del D[1234]



Direct-Address Tables

• A set of keys is in a set of universe U = 
{0,1,…,m-1} where m is not too large. 

• A direct-address table is an array denoted by 
T[0..m-1] in which each position, or slot, 
corresponds to a key in the universe U.
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Direct-Address Tables

DIRECT-ADDRESS-SEARCH(T, k)
return T[k]

DIRECT-ADDRESS-INSERT(T, x)
T[key[x]] = x

DIRECT-ADDRESS-DELETE (T, k)
T[key[x]] = NIL

Each operation takes only O(1) time.



Disadvantages of Direct-addressing

• Keys may not be non-negative integers.
• Direct-address tables require a large size of 

memory. 
– If the universe U is large, we have to store a table 

T  of size U.



Disadvantages of Direct-addressing

• Keys may not be non-negative integers.
• Solution: using prehash to map key to non-

negative integers.
– A string of bits represents an integer.
– In python using function hash(x) means prehash.

• Direct-address tables require a large size of 
memory.  

• Solution: using hashing



Hash Tables

• We use a hash function h to compute the slot 
from the key k.

• Hence h maps the universe U of keys into the 
slots of a hash table T[0..m-1]:

h: U -> {0,1,...,m-1}
• We say that an element with key k hashes to 

slot h(k); we also say that h(k) is the hash 
value of key k.
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Hash Table
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Collision resolution by Chaining

• We put all the elements that hash to the same 
slot in a linked list.



Hash with Chaining
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Hash with Chaining

CHAINED-HASH-SEARCH(T, k)
search for an element with key k in list T[h(k)]

CHAINED-HASH-INSERT(T, x)
insert x at the head of list T[h(key[x])]

CHAINED-HASH-DELETE (T, k)
delete x from the list T[h(key[x])]

Worst-case = O(1)

Worst-case = length 
of the list 

Worst-case = O(1) if 
lists are doubly linked.



Analyze Hash with Chaining

• Simple uniform hashing is an assumption that 
any given element is equally likely to hash into 
any of the m slots independently of where any 
other element has hashed to.

• For j = 0, 1 , …, m-1. Let us denote the length 
of the list T[ j ] by nj , so that 

n = n0 + n1 + …+ nm-1

• The average value of nj is E[nj] = α = n/m



Analyze Hash with Chaining

• We assume that the hash value h(k) can be 
computed in O(1) time, so that the time 
required to search for an element with key k 
depends linearly on the length nh(k) of the list 
T[h(k)].

• We consider two cases:
– The search is unsuccessful.
– The search successfully finds an element with key 

k.



Analyze Hash with Chaining

• The  expected time to search unsuccessfully
for a key k is the expected time to search to 
the end of the list T[h(k)].

• The list T[h(k)] has expected length=E[nh(k)] = α
• Hence the expected number of elements 

examined in unsuccessful search is α, and the 
total time required (including the time for 
computing h(k)) = O(1+ α)



Analyze Hash with Chaining

• The  expected time to search successfully for an 
element x is 1 more than the number of elements 
that appear before x in x’s list.

• Let xi denote the ith element inserted into the 
table for i= 1,2,…,n

• Let ki = key[xi]
• For keys ki and kj we define the random variable 

Xij = I{h(ki)=h(kj)}  
• Under the simple uniform hashing assumption, 

we have Pr{h(ki)=h(kj)} = 1/m , and so E[Xij]= 1/m



Analyze Hash with Chaining

• Hence the expected number of elements 
examined in a successful search is:
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Total time required 
for a successful 
search is O(1+α)



Analyze Hash with Chaining

• If the number of hash-table slots is at least 
proportional to the number of elements in the 
table, we have n = O(m) and, consequently 
α=n/m = O(m)/m = O(1).

• Searching takes constant time on average. 
• All dictionary operations can be supported in 

O(1) time on average.



Hash Functions

• A good hash function satisfies (approximately) 
the assumption of simple uniform hashing:

Each key is equally likely to hash to any of 
the m slots, independently of where any 
other key has hashed to.

• It is typically not possible to check this 
condition.



The Division Method

• For example, if hash table has size m = 12 and 
key k = 100 then h(k) = 4

• We usually avoid certain values of m. For 
example m should not be a power of 2.

• A prime is often a good choice for m.

h(k) = k mod m



The Multiplication Method

• A is in the range 0 < A < 1 , 
suggest that A = (51/2 -1)/2 = 0.6180339887…

• m = 2p

• k has w bits.

h(k) = [m(k A mod 1)]

h(k) = [(k.A) mod 2w ]>>(w-p) 



The Multiplication Method
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Example: The Multiplication Method

• k = 123456 , p = 14, m = 214 = 16384, w = 32
• Hence choose A to be the fraction of the form 

s/ 232 that is closest to (51/2 -1)/2.
• A = 2654435769
• k.s = 327706022297664 

= (76300. 232) + 17612864

r1 r2

14 most significant bits of r0 
yield the value h(k) = 67



Universal Hashing

• a , b are randomed and be in {0,1,..,p-1}
• p is a prime which is greater than the size of 

universe.
• The worst case key ki != kj :

Pr{h(ki)= h(kj)} = 1/m

h(k) = [(ak+b)mod p] mod m

Ideal situation of 
collision



Collision resolution by 
Open Addressing

• Each table entry contains either an element of 
the dynamic set or NIL.
– No chaining and only 1 item per slot

• When searching for an element, we examine 
table slots until the desired element is found or it 
is clear that the element is not in the table.

• In open addressing the hash table can fill up so 
that no further insertions can be made. 

• The load factor α can never exceed 1.



Open Addressing

• To perform insertion using open addressing, 
we successively examine, or probe, the hash 
table until we find an empty slot in which to 
put the key.

• Instead of being fixed in the order 0,1,…,m-1 
the sequence of positions probed depends 
upon the key being inserted. 



Open Addressing

• The hash function becomes:

• For every key k, the probe sequence 
<h(k,0) , h(k,1), … ,h(k, m-1)> 

be a permutation of <0,1,…,m-1>

h:  U x {0,1,…,m-1}  ->  {0,1,…,m-1} 



Open Addressing

HASH-INSERT (T, k)
i = 0
repeat j = h(k,i)

if T[ j ] = NIL
then T [j ] = k

return j
else i = i+1

until i = m
error “hash table overflow”



Open Addressing

HASH-SEARCH (T, k)
i = 0
repeat j = h(k,i)

if T[ j ] = k
then return j 

i = i+1
until T[ j ]=NIL or i =m
return NIL



Example: Open Addressing

• insert(586) , h(586,1) = 1
• …..
• insert(481) , h(481,1) = 6
• insert(496) , h(496,1) =4
• insert(496) , h(496,2) =1
• insert(496) , h(496,3) =3
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Linear Probing

• Given an ordinary hash function 
h’:  U    ->  {0,1,…,m-1} 

• the method of linear probing use the hash 
function :

• For i = 0,1,…,m-1
• Long runs of occupied slots build up, 

increasing the average search time!!

h(k,i) = ( h’(k) + i ) mod m 



Quadratic Probing

• Given an ordinary hash function 
h’:  U    ->  {0,1,…,m-1} 

• the method of quadratic probing use the hash 
function :

• For i = 0,1,…,m-1 and c1 and c2 are not equal 
to 0.

h(k,i) = ( h’(k) + c1i +c2i2 ) mod m 



Double Probing

• Given an ordinary hash function 
h’:  U    ->  {0,1,…,m-1} 

• the method of double probing use the hash 
function :

• For i = 0,1,…,m-1 and h1(k) and h2(k) are auxiliary 
hash functions.

• The value h2(k)  must be relatively prime to the 
hash-table size m.

h(k,i) = (h1(k) + i h2(k) ) mod m 



Analyze Open Addressing

• We have at most one element per slot, thus 
n ≤ m, which implies α ≤ 1.

• We assume the uniform hashing is used.
• The probe sequence <h(k,0) , h(k,1), … ,h(k, m-

1)> used to insert or search for each key k is 
equally likely to be any permutation of 
(0,1,…,m-1).  



Analyze Open Addressing

• The expected number of probes in an 
unsuccessful search is at most 1/(1- α)

• Thus inserting an element into an opening 
address hash table with load factor α requires 
at most 1/(1- α) probes on average, assuming 
uniform hashing.

• The expected number of probes in a sucessful
search is at most 

 1
1

ln
1


