
Ch16: Hash Tables

305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Dictionaries: Abstract Data Type

• Dictionaries (Abstract Data Type) is to maintain
set of items, each with a key
– INSERT(item)
– DELETE(item)
– SEARCH(key) -> return item with given key or report

does not exist
• A has table is an effective data structure for

implementing dictionaries.
• Worst case time for searching is O(n) but its

expected time is O(1).

Dictionaries in Python

• D={1234: ‘Bob’,
5678, ‘Alice’}

• Search by D[key]
• Insert by D[key] = value

– D[5678]=‘Robert’

• Delete by D[key]
– del D[1234]

Direct-Address Tables

• A set of keys is in a set of universe U =
{0,1,…,m-1} where m is not too large.

• A direct-address table is an array denoted by
T[0..m-1] in which each position, or slot,
corresponds to a key in the universe U.

Direct-Address Table

U
(universe of keys)

K
(actual keys)

/

/

/

/

/

/

0

1

2

3

4

5

6

7

8

9

2

3

5

8

key satellite
data

2

5

3

8

0 9
1

4

6

7

Direct-Address Tables

DIRECT-ADDRESS-SEARCH(T, k)
return T[k]

DIRECT-ADDRESS-INSERT(T, x)
T[key[x]] = x

DIRECT-ADDRESS-DELETE (T, k)
T[key[x]] = NIL

Each operation takes only O(1) time.

Disadvantages of Direct-addressing

• Keys may not be non-negative integers.
• Direct-address tables require a large size of

memory.
– If the universe U is large, we have to store a table

T of size U.

Disadvantages of Direct-addressing

• Keys may not be non-negative integers.
• Solution: using prehash to map key to non-

negative integers.
– A string of bits represents an integer.
– In python using function hash(x) means prehash.

• Direct-address tables require a large size of
memory.

• Solution: using hashing

Hash Tables

• We use a hash function h to compute the slot
from the key k.

• Hence h maps the universe U of keys into the
slots of a hash table T[0..m-1]:

h: U -> {0,1,...,m-1}
• We say that an element with key k hashes to

slot h(k); we also say that h(k) is the hash
value of key k.

Hash Table

U
(universe of keys)

K
(actual keys)

/

/

/

/

/

/

0

h(k1)

h(k4)

h(k2)

h(k3)

m-1

k1

k2

k4

k3

Hash Table

U
(universe of keys)

K
(actual keys)

/

/

/

/

/

/

0

2

3

5

8

m-1

k1

k2

k4

k3

h(k1)=2

h(k4)=3

h(k2)=5

h(k3)=8

Hash Table

U
(universe of keys)

K
(actual keys)

/

/

/

/

/

/

0

h(k1)

h(k4)

h(k2)= h(k5)

h(k3)

m-1

k1

k2

k4

k3
k5

collision

Collision resolution by Chaining

• We put all the elements that hash to the same
slot in a linked list.

Hash with Chaining

U
(universe of keys)

K
(actual keys)

/

/

/

/

/

/

k1

k3

k5

k6

k1

k5

k3

k6

k4

k4

Hash with Chaining

CHAINED-HASH-SEARCH(T, k)
search for an element with key k in list T[h(k)]

CHAINED-HASH-INSERT(T, x)
insert x at the head of list T[h(key[x])]

CHAINED-HASH-DELETE (T, k)
delete x from the list T[h(key[x])]

Worst-case = O(1)

Worst-case = length
of the list

Worst-case = O(1) if
lists are doubly linked.

Analyze Hash with Chaining

• Simple uniform hashing is an assumption that
any given element is equally likely to hash into
any of the m slots independently of where any
other element has hashed to.

• For j = 0, 1 , …, m-1. Let us denote the length
of the list T[j] by nj , so that

n = n0 + n1 + …+ nm-1

• The average value of nj is E[nj] = α = n/m

Analyze Hash with Chaining

• We assume that the hash value h(k) can be
computed in O(1) time, so that the time
required to search for an element with key k
depends linearly on the length nh(k) of the list
T[h(k)].

• We consider two cases:
– The search is unsuccessful.
– The search successfully finds an element with key

k.

Analyze Hash with Chaining

• The expected time to search unsuccessfully
for a key k is the expected time to search to
the end of the list T[h(k)].

• The list T[h(k)] has expected length=E[nh(k)] = α
• Hence the expected number of elements

examined in unsuccessful search is α, and the
total time required (including the time for
computing h(k)) = O(1+ α)

Analyze Hash with Chaining

• The expected time to search successfully for an
element x is 1 more than the number of elements
that appear before x in x’s list.

• Let xi denote the ith element inserted into the
table for i= 1,2,…,n

• Let ki = key[xi]
• For keys ki and kj we define the random variable

Xij = I{h(ki)=h(kj)}
• Under the simple uniform hashing assumption,

we have Pr{h(ki)=h(kj)} = 1/m , and so E[Xij]= 1/m

Analyze Hash with Chaining

• Hence the expected number of elements
examined in a successful search is:

n

i

n

i

n

ij

n

i

n

ij
ij

n

i

n

ij
ij

in
nm

mn

XE
n

X
n

E

1

1 1

1 1

1 1

)(
1

1

)
1

1(
1

)1(
1

)1(
1

n

m

n

nn
n

nm

in
nm

n

i

n

i

22
1

2

1
1

)
2

)1(
(

1
1

)(
1

1

2

11

Total time required
for a successful
search is O(1+α)

Analyze Hash with Chaining

• If the number of hash-table slots is at least
proportional to the number of elements in the
table, we have n = O(m) and, consequently
α=n/m = O(m)/m = O(1).

• Searching takes constant time on average.
• All dictionary operations can be supported in

O(1) time on average.

Hash Functions

• A good hash function satisfies (approximately)
the assumption of simple uniform hashing:

Each key is equally likely to hash to any of
the m slots, independently of where any
other key has hashed to.

• It is typically not possible to check this
condition.

The Division Method

• For example, if hash table has size m = 12 and
key k = 100 then h(k) = 4

• We usually avoid certain values of m. For
example m should not be a power of 2.

• A prime is often a good choice for m.

h(k) = k mod m

The Multiplication Method

• A is in the range 0 < A < 1 ,
suggest that A = (51/2 -1)/2 = 0.6180339887…

• m = 2p

• k has w bits.

h(k) = [m(k A mod 1)]

h(k) = [(k.A) mod 2w]>>(w-p)

The Multiplication Method

k

w bits

s = A . 2w

X

r0r1

2w bits

p bits

h(k)

Example: The Multiplication Method

• k = 123456 , p = 14, m = 214 = 16384, w = 32
• Hence choose A to be the fraction of the form

s/ 232 that is closest to (51/2 -1)/2.
• A = 2654435769
• k.s = 327706022297664

= (76300. 232) + 17612864

r1 r2

14 most significant bits of r0
yield the value h(k) = 67

Universal Hashing

• a , b are randomed and be in {0,1,..,p-1}
• p is a prime which is greater than the size of

universe.
• The worst case key ki != kj :

Pr{h(ki)= h(kj)} = 1/m

h(k) = [(ak+b)mod p] mod m

Ideal situation of
collision

Collision resolution by
Open Addressing

• Each table entry contains either an element of
the dynamic set or NIL.
– No chaining and only 1 item per slot

• When searching for an element, we examine
table slots until the desired element is found or it
is clear that the element is not in the table.

• In open addressing the hash table can fill up so
that no further insertions can be made.

• The load factor α can never exceed 1.

Open Addressing

• To perform insertion using open addressing,
we successively examine, or probe, the hash
table until we find an empty slot in which to
put the key.

• Instead of being fixed in the order 0,1,…,m-1
the sequence of positions probed depends
upon the key being inserted.

Open Addressing

• The hash function becomes:

• For every key k, the probe sequence
<h(k,0) , h(k,1), … ,h(k, m-1)>

be a permutation of <0,1,…,m-1>

h: U x {0,1,…,m-1} -> {0,1,…,m-1}

Open Addressing

HASH-INSERT (T, k)
i = 0
repeat j = h(k,i)

if T[j] = NIL
then T [j] = k

return j
else i = i+1

until i = m
error “hash table overflow”

Open Addressing

HASH-SEARCH (T, k)
i = 0
repeat j = h(k,i)

if T[j] = k
then return j

i = i+1
until T[j]=NIL or i =m
return NIL

Example: Open Addressing

• insert(586) , h(586,1) = 1
• …..
• insert(481) , h(481,1) = 6
• insert(496) , h(496,1) =4
• insert(496) , h(496,2) =1
• insert(496) , h(496,3) =3

586

133

496

204

481

0

1

2

3

4

5

6

7

Fail probe

Linear Probing

• Given an ordinary hash function
h’: U -> {0,1,…,m-1}

• the method of linear probing use the hash
function :

• For i = 0,1,…,m-1
• Long runs of occupied slots build up,

increasing the average search time!!

h(k,i) = (h’(k) + i) mod m

Quadratic Probing

• Given an ordinary hash function
h’: U -> {0,1,…,m-1}

• the method of quadratic probing use the hash
function :

• For i = 0,1,…,m-1 and c1 and c2 are not equal
to 0.

h(k,i) = (h’(k) + c1i +c2i2) mod m

Double Probing

• Given an ordinary hash function
h’: U -> {0,1,…,m-1}

• the method of double probing use the hash
function :

• For i = 0,1,…,m-1 and h1(k) and h2(k) are auxiliary
hash functions.

• The value h2(k) must be relatively prime to the
hash-table size m.

h(k,i) = (h1(k) + i h2(k)) mod m

Analyze Open Addressing

• We have at most one element per slot, thus
n ≤ m, which implies α ≤ 1.

• We assume the uniform hashing is used.
• The probe sequence <h(k,0) , h(k,1), … ,h(k, m-

1)> used to insert or search for each key k is
equally likely to be any permutation of
(0,1,…,m-1).

Analyze Open Addressing

• The expected number of probes in an
unsuccessful search is at most 1/(1- α)

• Thus inserting an element into an opening
address hash table with load factor α requires
at most 1/(1- α) probes on average, assuming
uniform hashing.

• The expected number of probes in a sucessful
search is at most

 1
1

ln
1

