
Ch17: Single Source Shortest
Path
305234

Algorithm Analysis and Design
Jiraporn Pooksook

Naresuan University

Shortest Path Problem

• A motorist wishes to find the shortest possible
route from Chicago to Boston.

• Given a road map of the US on which the
distance between each pair of adjacent
intersections is marked.

• How can we determine the shortest route?

Shortest Path Problem

• Given a weighted directed graph G =(V,E) with weight
function

w : E -> R
• Mapping edges to read valued weights.
• Let path p = (v0 , v1 ,…, vk) and (vi , vi+1) ϵ E for 0 ≤ i < k
• The weight of path p = (v0 , v1 ,…, vk) is the sum of the

weights of its constituent edges:

• We define the shortest-path weight from u to v by

If there is a path from u to v , otherwise

k

i
ii vvwpw

1
1),()(

}:)(min{),(vupwvu
p

),(vu

Shortest Path Problem

0

s

a c

e

b d

f

1

2

1

1

3

5 3

2

1

1

42

d(u)=current weight

Shortest Path Problem

0

s

1

a c

e

2

b d

f

1

2

1

1

3

5 3

2

1

1

42

d(u)=current weight

Shortest Path Problem

0

s

1

a

6

c

3 e

2

b d

f

1

2

1

1

3

5 3

2

1

1

42

d(u)=current weight

Can we find a shorter path??6),(cs

Shortest Path Problem

0

s

1

a

5

c

3 e

2

b d

f

1

2

1

1

3

5 3

2

1

1

42

d(u)=current weight

5),(cs

Representing Shortest Path

• Given a graph G=(V,E)
• For each vertex v ϵ V, a predecessor ¶[v] that

is either another vertex or NIL.
• We denote d(v) as a value inside a

circle(graph) to be a current weight.
• We denote ¶[v], for any vertex v, as a

predecessor on the current best path to v.
• ¶[s]=NIL

Representing Short Path

0

s

1

a

6

c

3 e

2

b d

f

1

2

1

1

3

5 3

2

1

1

42

¶[e] = a
¶[a] = s

Negative-weight Edges

• There may be edges whose weights are
negative.

• If there is a negative-weight cycle reachable
from s, shortest-path weights are not well
defined.

• If there is a negative-weight cycle on some
path from s to v, we define),(vs

Negative-weight Edges

3

a

-1

b

5

c

11

d

-ꚙ

e

-ꚙ

f

-ꚙ

g

0

s

3

-4

6

-3

3

-6

5

2

8

7

4

Negative-weight Edges

ꚙ

h

ꚙ

i

ꚙ

j

0

s

2

-8 3

General Structure of Shortest Path

• Initialize single source
– For u ϵ V, we set d[v] = ꚙ, ¶[u] = NIL and d[s] = 0

• Relaxation
– Repeatedly select edge(u,v) and relax(u,v) by

checking the condition:
if d[v] > d[u] + w(u,v)

then d[v] = d[u] + w(u,v)
¶[v] = u

Initialize-Single-Source(G,s)

for each vertex v in V[G]
do d[v] = ꚙ

¶[v] = NIL
d[s] = 0

Initialize-Single-Source(G,s)

0

s

ꚙ

a

ꚙ

c

ꚙ e

ꚙ

b

ꚙ

d

ꚙ
f

1

2

1

1

3

5 3

2

1

1

42

d(u)=current weight

Relaxation(u,v,w)

if d[v] > d[u] + w(u,v)
then d[v] = d[u] + w(u,v)

¶[v] = u

Relaxation(d, c, w(d,c))

0

s

1

a

6

c

3 e

2

b

3

d

f

1

2

1

1

3

5 3

2

1

1

42

d[c] > d[d] + w(d,c)
6 > 3 + 2

Hence, d[c] = 5 and ¶[c] = d

Shortest path in Directed Acyclic
Graphs

• We can compute shortest paths from a single
source in O(V+E) time using relaxation on
edges of a weighted directed acyclic
graph(dag).

DAG-SHORTEST-PATHS(G,w,s)

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G,s)
for each vertex u, taken in topologically sorted order

do for each vertex v ϵ Adj[u]
do RELAX(u, v, w)

Example: DAG

ꚙ

r

0

s

ꚙ

t

ꚙ

x

ꚙ

y

ꚙ

z
5

6

2 7 -1 -2

3 4

2

Example: DAG

ꚙ

r

0

s

ꚙ

t

ꚙ

x

ꚙ

y

ꚙ

z
5

6

2 7 -1 -2

3 4

2

Example: DAG

ꚙ

r

0

s

2

t

6

x

ꚙ

y

ꚙ

z
5

6

2 7 -1 -2

3 4

2

Example: DAG

ꚙ

r

0

s

2

t

6

x

6

y

4

z
5

6

2 7 -1 -2

3 4

2

Example: DAG

ꚙ

r

0

s

2

t

6

x

5

y

4

z
5

6

2 7 -1 -2

3 4

2

Example: DAG

ꚙ

r

0

s

2

t

6

x

5

y

3

z
5

6

2 7 -1 -2

3 4

2

Example: DAG

ꚙ

r

0

s

2

t

6

x

5

y

3

z
5

6

2 7 -1 -2

3 4

2

Dijkstra Algorithm

• Solves the single-source shortest-paths
problem on a weighted directed graph G =
(V,E) for the case in which all edge weights are
nonnegative.

• We assume that w(u,v) ≥ 0 for each edge (u,v)
ϵ E.

Dijkstra(G,w,s)

INITIALIZE-SINGLE-SOURCE(G,s)
S =
Q = V[G]
while Q !=

do u = EXTRACT-MIN(Q)
S = S ꓴ {u}
for each vertex v ϵ Adj[u]

do RELAX(u,v,w)

Analyze Dijkstra

• The running time of Dijkstra depends on how
to implement the min-priority queue.

• If we implement the min-priority queue with a
binary min-heap which has running time
O(lg V) if all vertices are reachable from the
source. Hence total time is O((V+E)lg V)
= O(E lg V)

Example: Dijkstra

0s

ꚙ

t

ꚙ

x

ꚙ

y

ꚙ

z

10
1

4 6

2

7

9
23

5

S ={ }
Q = {0, ꚙ, ꚙ, ꚙ, ꚙ}

Example: Dijkstra

0s

10

t

ꚙ

x

5

y

ꚙ

z

10
1

4 6

2

7

9
23

5

S ={ s }
Q = {0, 10, 5, ꚙ, ꚙ}

Example: Dijkstra

0s

8

t

14

x

5

y

7

z

10
1

4 6

2

7

9
23

5

S ={ s , y }
Q = {0, 8, 5, 14, 7}

Example: Dijkstra

0s

8

t

13

x

5

y

7

z

10
1

4 6

2

7

9
23

5

S ={ s , y, z }
Q = {0, 8, 5, 13, 7}

Example: Dijkstra

0s

8

t

9

x

5

y

7

z

10
1

4 6

2

7

9
23

5

S ={ s ,t, y, z }
Q = {0, 8, 5, 9, 7}

Example: Dijkstra

0s

8

t

9

x

5

y

7

z

10
1

4 6

2

7

9
23

5

S ={ s ,t,x, y, z }
Q = {0, 8, 5, 9, 7}

Bellman-Ford Algorithm

• Solves the single-source shortest-paths problem
in general case in which edge weights may be
negative.

• The Bellman-Ford algorithm returns a boolean
value indicating whether or not there is a
negative-weight cycle that is reachable from the
source. If there is such a cycle, the algorithm
indicates that no solution exists. If there is no
such cycle, the algorithm produces the shortes
paths and their weights.

Bellman-Ford(G,w,s)

INITIALIZE-SINGLE-SOURCE(G,s)
for i =1 to |V[G]| -1

do for each edge (u,v) ϵ E[G]
do RELAX(u, v , w)

for each edge (u,v) ϵ E[G]
do if d[v] > d[u] + w(u,v)

then return false
return true

Analyze Bellman-Ford

• The running time is O(VE) since the
initialization take O(V) and each of |V|-1
passes over edges in lines 2-4 takes O(E), and
for loop in lines 5-7 takes O(E) time.

Example: Bellman-Ford

0s ꚙ

x

ꚙ

z

ꚙ

y

2

2

2

2

Example: Bellman-Ford

0s 2

x

4

z

4

y

2

2

2

2

Example: Bellman-Ford

0s ꚙ

x

ꚙ

y

ꚙ

z

-2

-2

-2

-2

Example: Bellman-Ford

0s -2

x

-4

y

-6

z

-2

-2

-2

-2

RETURN false !!!

-2 > -6 + -2
Then

d[x] = -8

-4 > -8 + -2
Then

d[y] = -10

Example: Bellman-Ford

0s

ꚙ

t

ꚙ

x

ꚙ

y

ꚙ

z

6
-2

7
-4

9

2

-3
8

5

7

Example: Bellman-Ford

0s

6

t

ꚙ

x

7

y

ꚙ

z

6
-2

7
-4

9

2

-3
8

5

7

Example: Bellman-Ford

0s

6

t

4

x

7

y

2

z

6
-2

7
-4

9

2

-3
8

5

7

Example: Bellman-Ford

0s

2

t

4

x

7

y

2

z

6
-2

7
-4

9

2

-3
8

5

7

Example: Bellman-Ford

0s

2

t

4

x

7

y

-2

z

6
-2

7
-4

9

2

-3
8

5

7

RETURN true
With shortest path 0, 2, 4, 7, -2

Negative weighted cycle

0

s
3 2 3 3 2

-6

v

The shortest simple path to reach v from s = 13
If we have negative edge cycle in a path , it takes

exponential running time to solve.

