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Shortest Path Problem

• A motorist wishes to find the shortest possible 
route from Chicago to Boston.

• Given a road map of the US on which the 
distance between each pair of adjacent 
intersections is marked.

• How can we determine the shortest route?



Shortest Path Problem

• Given a weighted directed graph G =(V,E) with weight 
function 

w : E -> R
• Mapping edges to read valued weights.
• Let path p = (v0 , v1 ,…, vk ) and (vi , vi+1 ) ϵ E  for 0 ≤ i < k
• The weight of path p = (v0 , v1 ,…, vk ) is the sum of the 

weights of its constituent edges:

• We define the shortest-path weight from u to v by

If there is a path from u to v , otherwise
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Can we find a shorter path??6),( cs
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Representing Shortest Path

• Given a graph G=(V,E)
• For each vertex v ϵ V, a predecessor ¶[v] that 

is either another vertex or NIL.
• We denote d(v) as a value inside a 

circle(graph) to be a current weight.
• We denote ¶[v], for any vertex v, as a 

predecessor on the current best path to v.
• ¶[s]=NIL



Representing Short Path
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Negative-weight Edges

• There may be edges whose weights are 
negative.

• If there is a negative-weight cycle reachable 
from s, shortest-path weights are not well 
defined.

• If there is a negative-weight cycle on some 
path from s to v, we define ),( vs



Negative-weight Edges
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General Structure of Shortest Path

• Initialize single source
– For u ϵ V, we set d[v] = ꚙ, ¶[u] = NIL and d[s] = 0

• Relaxation
– Repeatedly select edge(u,v) and relax(u,v) by 

checking the condition:
if d[v] > d[u] + w(u,v) 

then d[v] = d[u] + w(u,v)
¶[v] = u



Initialize-Single-Source(G,s)

for each vertex v in V[G]
do d[v] = ꚙ

¶[v] = NIL
d[s] = 0



Initialize-Single-Source(G,s)
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Relaxation(u,v,w)

if  d[v] > d[u] + w(u,v)
then d[v] = d[u] + w(u,v)

¶[v] = u 



Relaxation(d, c, w(d,c) ) 
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Shortest path in Directed Acyclic 
Graphs

• We can compute shortest paths from a single 
source in O(V+E) time using relaxation on 
edges of a weighted directed acyclic 
graph(dag).



DAG-SHORTEST-PATHS(G,w,s)

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G,s)
for  each vertex u, taken in topologically sorted order

do for each vertex v ϵ Adj[u]
do RELAX(u, v, w)



Example: DAG
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Dijkstra Algorithm

• Solves the single-source shortest-paths 
problem on a weighted directed graph G = 
(V,E) for the case in which all edge weights are 
nonnegative.

• We assume that w(u,v) ≥ 0 for each edge (u,v) 
ϵ E.



Dijkstra(G,w,s)

INITIALIZE-SINGLE-SOURCE(G,s)
S = 
Q = V[G]
while Q != 

do u = EXTRACT-MIN(Q)
S = S ꓴ {u}
for each vertex v ϵ Adj[u]

do RELAX(u,v,w)

 

 



Analyze Dijkstra

• The running time of Dijkstra depends on how 
to implement the min-priority queue.

• If we implement the min-priority queue with a 
binary min-heap which has running time 
O(lg V) if all vertices are reachable from the 
source. Hence total time is O((V+E)lg V) 
= O( E lg V)



Example: Dijkstra
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Example: Dijkstra
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Example: Dijkstra
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Example: Dijkstra
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Example: Dijkstra
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Bellman-Ford Algorithm

• Solves the single-source shortest-paths problem 
in general case in which edge weights may be 
negative. 

• The Bellman-Ford algorithm returns a boolean
value indicating whether or not there is a 
negative-weight cycle that is reachable from the 
source. If there is such a cycle, the algorithm 
indicates that no solution exists. If there is no 
such cycle, the algorithm produces the shortes
paths and their weights.



Bellman-Ford(G,w,s)

INITIALIZE-SINGLE-SOURCE(G,s)
for i =1 to |V[G]| -1

do  for each edge (u,v) ϵ E[G]
do RELAX(u, v , w)

for each edge (u,v) ϵ E[G]
do if d[v] > d[u] + w(u,v)

then return false
return true



Analyze Bellman-Ford

• The running time is O(VE) since the 
initialization take O(V) and each of |V|-1 
passes over edges in lines 2-4 takes O(E), and 
for loop in lines 5-7 takes O(E) time.
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Example: Bellman-Ford
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Example: Bellman-Ford
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-2 > -6 + -2
Then 

d[x] = -8

-4 > -8 + -2 
Then 

d[y] = -10
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Example: Bellman-Ford
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Negative weighted cycle 
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If we have negative edge cycle in a path , it takes 

exponential running time to solve.


