Ch18: Dynamic Programming

305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Dynamic Programming

- Solves problems by combing the solutions to subproblems.
- Similar to divide-and –conquer method but dynamic programming is applicable when subproblems are not independent, that is, when subproblems share subsubproblems.
- A dynamic-programming algorithm solves every subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time the subsubproblem is encountered.

Dynamic Programming

 Dynamic programming is typically applied to optimization problems, can be many possible solutions. We wish to find a solution with the optimal (minimum or maximum) value.

Fibonacci Numbers

- $F_1 = F_2 = 1$
- $F_n = F_{n-1} + F_{n-2}$
- Goal : to compute F_n

Naïve Recursive Algorithm

```
fib(n):

if n <= 2

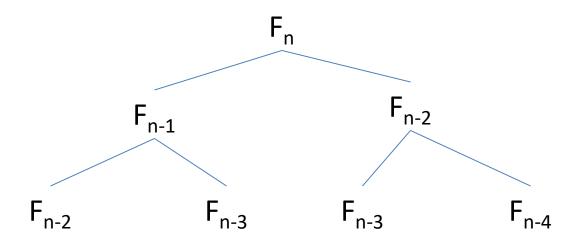
then f = 1

else f = fib(n-1) + fib(n-2)

return f
```

```
Exponential running time !!
T(n) = T(n-1) + T(n-2) + \Theta(1)
>= 2 T(n-2)
= \Theta(2^{n/2})
```

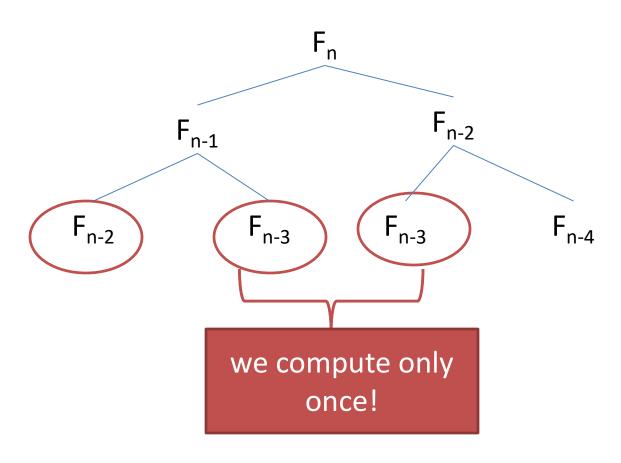
Naïve Recursive Algorithm



Memoized Dynamic Programming Algorithm

```
memo= { }
fib(n):
      if n is in memo
             then return memo[n]
      if n <=2
             then f = 1
      else f = fib(n-1) + fib(n-2)
      memo[n] = f
return f
```

Memoized Dynamic Programming Algorithm



Memoized Dynamic Programming Algorithm

- fib(k) only recurses the first time it is called.
- For all k, memoized calls cost ⊕ (1)
- The number of nonmemoized call is n fib(1), fib(2), ..., fib(n)
- The non-recursive work per call is $\Theta(1)$
- Hence running time = $\Theta(n)$

Dynamic Programming

- Dynamic programming algorithm in general is to memorize and re-use solutions to subproblems that help solving the problem.
- Hence dynamic programming is a recursion and memoization.
- The running time is equal to the number of subproblems x (time/subproblem)
 - Ex: $n \times \Theta(1) = \Theta(n)$

Don't count memoized recursion!!

Bottom-up Dynamic Programming algorithm

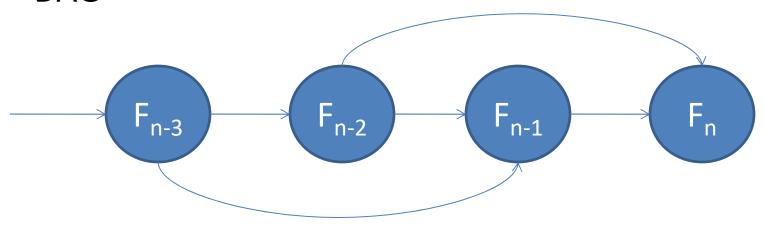
```
fib= { }
for k from 1 to n :
    if k <= 2
        then f = 1
    else f = fib[k-1] + fib[k-2]

    fib[k] = f
return fib[n]</pre>
```

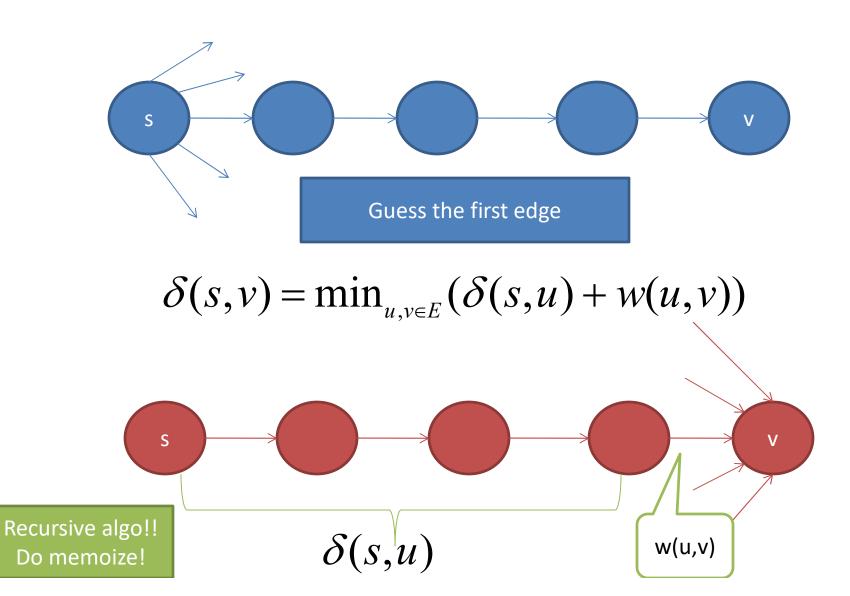
Bottom-up Dynamic Programming algorithm

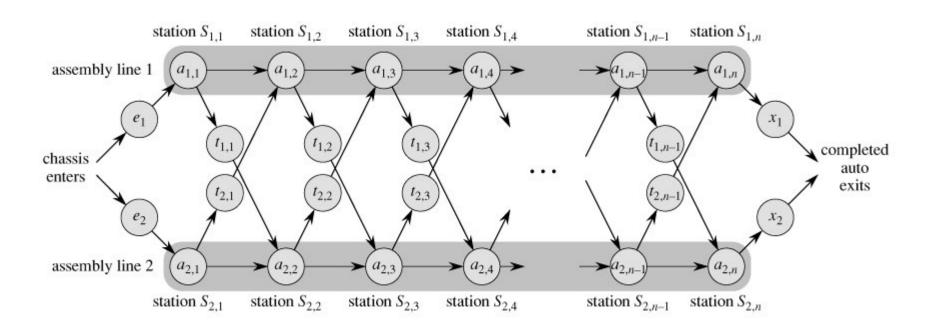
- It has exactly the same computation to memoization.
- It uses topological sort of subproblems dependency.

- DAG



Single-Source Shortest Paths



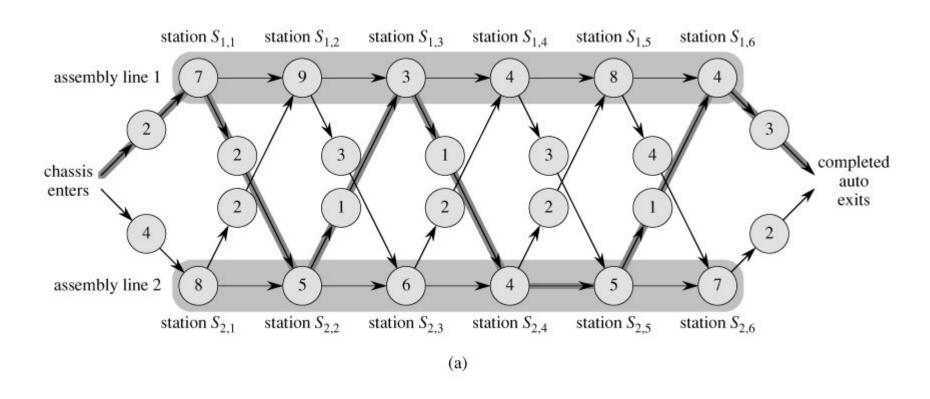


- The structure of the fastest way through the factory.
- There are 2 choices:
- Come from station $S_{1,j-1}$ and then directly to station $S_{1,j}$
- Come from station $S_{2,j-1}$ and then been transferred to station $S_{1,j}$

- A recursive solution
- The fastest time to get a chassis all the way through the factory is denoted by f*.
- $f^* = min(f_1[n] + x_1, f_2[n] + x_2)$
- $f_1[1] = e_1 + a_{1,1}$
- $f_2[1] = e_2 + a_{2,1}$

- A recursive solution
- $f_1[j] = f_1[j-1] + a_{1,i}$, and
- $f_1[j] = f_2[j-1] + t_{2,j-1} + a_{1,j}$
- $f_1[j] = min (f_1[j-1] + a_{1,i}, f_2[j-1] + t_{2,i-1} + a_{1,i})$
- $f_2[j] = f_2[j-1] + a_{2,i}$, and
- $f_2[j] = f_1[j-1] + t_{1,j-1} + a_{2,j}$
- $f_2[j] = min (f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j})$

- A recursive solution
- $f_1[j] = e_1 + a_{1.1}$ if j = 1
- $f_1[j] = min (f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$ if $j \ge 2$
- $f_2[1] = e_2 + a_{2,1}$ if j=1
- $f_2[j] = min (f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j})$ if $j \ge 2$



 $l^* = 1$

- Computing the fastest times
- If we use recursion, the running time will be
- $\Theta(2^{n/2})$
- If we use bottom-up dynamic programming,
 the running time will be only ⊕(n)

Fastest-Way(a, t, e, x, n)

```
f_1[1] = e_1 + a_{1.1}
f_2[1] = e_2 + a_{2,1}
for j = 2 to n
             do if f_1[j-1] + a_{1,i} \le f_2[j-1] + t_{2,j-1} + a_{1,i}
                 then f_1[j] = f_1[j-1] + a_{1,i}
                           I_{1}[j] = 1
                 else f_1[j] = f_2[j-1] + t_{2,j-1} + a_{1,j}
                           I_1[j] = 2
                  if f_2[j-1] + a_{2,i} \le f_1[j-1] + t_{1,j-1} + a_{2,i}
                 then f_2[j] = f_2[j-1] + a_{2,j}
                            I_1[j] = 2
                 else f_2[j] = f_1[j-1] + t_{1,j-1} + a_{2,j}
                           I_{1}[j] = 1
if f_1[n] + x_1 \le f_2[n] + x_2
             then f^* = f_1[n] + x_1
                     1* = 1
             else f^* = f_2[n] + x_2
                     1* = 2
```

Print-Stations(I,I*,n)

```
i = |*
print "line" i",sation "n
for j = n downto 2
     do i = ||i|||| print "line" i",station" j-1
```