
Ch19: Greedy Algorithm

305234 
Algorithm Analysis and Design 

Jiraporn Pooksook
Naresuan University



Greedy Algorithm

• A greedy algorithm always makes the choice 
that looks best at the moment.

• It does not always yield optimal solutions, but 
for many problems it does.



Activity-selection Problem

• It is a problem of how to select a maximum-
size subset of mutually compatible activities. 

• Activities ai and aj are compatible if the 
interval [si , fi ) and [sm , fj ) do not overlap.



Activity-selection Problem

1
2

3

4

5
6

7
8

9
11

1
0

time

Input:
i si fi

1 1 4
2 3 5
3 0 6
4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
10 9 13
11 12 14 

1 40 5 7 8 11 12



Greedy-Activity-selection(s,f)

N = length[s] 
A = a_1;
i = 1
For m=2 to n

do if s[ m ]f[ i ] then
A = A   a_m
i = m

Return A



Knapsack Problem

• Consider the sack of capacity 5 Kg.
• We have 3 items

– Item 1: 10 Kg with value 60$
– Item 2: 20 Kg with value 100$
– Item 3: 30 Kg with value 120$

The first i
item 
\capacity

0 5 10 15 20 25 30 35 40 45 50

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 60 60 60 60 60 60 60 60 60

2 0 0 60 60 100 100 160 160 160 160 160

3 0 0 60 60 100 100 160 160 180 180 220



0-1 and Fractional Knapsack Problem

• Constraints of 2 variants of the knapsack 
problem:
– 0-1 knapsack problem: each item must either be 

taken or left behind.
– Fractional knapsack problem: the thief can take 

fractions of items.

• The greedy strategy of taking as mush as 
possible of the item with greatest vi / wi only 
works for the fractional knapsack problem.



Greedy vs Dynamic programming

• 0-1 knapsack problem cannot be solved by 
greedy algorithm because it cannot deliver the 
optimal solution.

• Fractional knapsack problem can be solved by 
greedy strategy. 



Greedy Knapsack problem



Huffman codes

• Huffman codes are a widely used and very 
effective technique for compressing data; 
savings of 20% to 90% are typical, depending 
on the characteristics of the file being 
compressed. 

• Huffman's greedy algorithm uses a table of the 
frequencies of occurrence of each character to 
build up an optimal way of representing each 
character as a binary string.



Huffman codes

• There are many ways to represent such a file of information. 
We consider the problem of designing a binary character 
code.

• A data file of 100,000 characters contains only the 
characters a-f, with the frequencies indicated. If each 
character is assigned a 3-bit codeword, the file can be encoded 
in 300,000 bits. Using the variable-length code shown, the file 
can be encoded in 224,000 bits.

a b c d e f

Frequency (in thousands) 45 13 12 16 9 5

Fixed-length codeword 000 001 010 011 100 101

Variable-length codeword 0 101 100 111 1101 1100



Prefix codes and Coding tree

• Prefix codes are codes in which no codeword is also a 
prefix of some other codeword.

• Decoding is simple. We can identify the initial 
codeword, translate it back to the original character, 
remove it from the encoded file, and repeat the 
decoding process on the remainder of the encoded 
file. 

• The string 001011101 parses uniquely as 
0 0 101 1101, which decodes to aabe.



Prefix codes and Coding tree
• A binary tree are used as a presentation. We interpret the binary codeword for a 

character as the path from the root to that character, where 0 means "go to the left 
child" and 1 means "go to the right child.” 

• Each leaf is labeled with a character and its frequency of occurrence. Each internal 
node is labeled with the sum of the weights of the leaves in its subtree.

a=0
b=101a=000

b=001



Optimal coding trees

• Given a tree T corresponding to a prefix code, it is 
a simple matter to compute the number of bits 
required to encode a file. 

• For each character c in the alphabet C, let f(c) 
denote the frequency of c in the file and let dT(c) 
denote the depth of c's leaf in the tree. Note 
that dT(c) is also the length of the codeword for 
character c. The number of bits required to encode 
a file is thus

• We want to find a coding tree with minimum B(T)

B(T) = cC f(c)dT(c)



Constructing a Huffman code

Psuedo code: Huffman(C)
n = |C|
Q=C
For i = 1 to n-1

do allocate a new node z
left[z] = x = Extract-Min(Q)
right[z] = y = Extract-Min(Q)
f[z] = f[x]+f[y]
Insert(Q,z)

Return Extract-Min(Q)



Example: Constructing Huffman code


