
Ch2: Loop Invariants

305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Accuracy of an Algorithm

result = a +b
print(result)

input output

If before running the
algorithm, result= 0

then after running the
algorithm, result= a+b

Accuracy of an Algorithm

result = a +b
print(result)

Input
a = 3
b = 4

Output
result = 7

Accuracy of an Algorithm

result = a +b
print(result)

Input
a = -3
b = 4

Output
result = 1

Accuracy of an Algorithm

result = a +b
print(result)

Input
a = 0
b = 0

Output
result = 0

Example: Accuracy of an Algorithm

?
degree

radian
sine
cosine

If before running the
algorithm, radian =?

sin=? cos=?

Then after running the
algorithm, radian =?

sin=? cos=?

Example: Accuracy of an Algorithm

radian =
angle*Pi/180

degree
radian
sine
cosine

If before running the
algorithm, radian = 0

then after running the
algorithm, radian =

angle*pi/180

Example

Example

Example: Accuracy of an Algorithm

?
Domino tile
(left, right)

Place Left / Right/ None

Example: Accuracy of an Algorithm

left/right =2
or

left/right = 9

Domino tile
(left, right)

Place Left / Right/ None

before running the
algorithm, left of given =2

and right of given = 9

then after running the
algorithm, right of input =
left of given or left of input

= right of given

Example

Example

Example

Example: Accuracy of an Algorithm

?
10 numbers summation of 10 numbers

If before running the
algorithm, sum =0

Then after running
the algorithm, sum =

summation of 10
numbers

Example: Accuracy of an Algorithm

sum = 0
for i in numbers:

sum = sum+i

10 numbers
summation of
10 numbers

If before running the
algorithm, sum =0

Then after running
the algorithm, sum =

summation of 10
numbers

Example: Accuracy of an Algorithm

sum = 0
for i in numbers:

sum = sum+i

[1,2,3,4,5,6,7,8,9,10]
summation of
0 +1

If before running loop
1, sum =0

Then after running
loop 1, sum = 1

Example: Accuracy of an Algorithm

sum = 0
for i in numbers:

sum = sum+i

[1,2,3,4,5,6,7,8,9,10]
summation of
0 +1 + 2

If before running loop
2, sum =1

Then after running
loop 2, sum = 3

Example: Accuracy of an Algorithm

sum = 0
for i in numbers:

sum = sum+i

[1,2,3,4,5,6,7,8,9,10]
summation of
0 +1 + 2+3

If before running loop
3, sum =3

Then after running
loop 3, sum = 6

Example: Accuracy of an Algorithm

sum = 0
for i in numbers:

sum = sum+i

[1,2,3,4,5,6,7,8,9,10]
summation of
0 +1 + 2+3+4+5
+6+7+8+9+10

If before running loop
10, sum =45

Then after running
loop 10, sum = 55

Before running loop N, we have sum value of loop N-1

What is a Loop Invariant?

• An loop invariant is a formal statement of a
properties of variables in an algorithm which
holds true just before and after each iteration
of running the loop.

• Similar to mathematical induction where the
initialization is proving a base case and the
maintenance is proving an inductive step.

proofs of a Loop Invariant

• Initialization
– It is true prior to the first iteration of the loop.

• Maintenance
– If it Is true before an iteration of the loop, it

remains true before the next iteration.
• Termination

– When the loop terminates, the invariant gives a
useful property that helps shows that the
algorithm is correct.

Example loop invariants with
summation

sum = 0
for i=1 to length[A]

sum = sum + A[i]

What is a loop invariant for this code?
A property that will be true before and after
running the loop.







1

1

][
i

m

mAsum
A loop invariant is
before running loop i ,

Example loop invariants with
summation

sum = 0
for i=1 to length[A]

sum = sum + A[i]

Initialization:
At i = 1 , m=1-1 = 0

hence, sum = 0
holds True!!!

Input = [9,5,7,4,2]

Let us check
with some

sample input

Example loop invariants with
summation

sum = 0
for i=1 to length[A]

sum = sum + A[i]

Maintenance:
If sum (before) = sum from 1 to i-1 then

sum(before next iter) = sum from 1 to i-1 +1 i Sum(before)
sum to i - 1

Sum(after)

1 0 0 + 9

2 9 0+9+5

3 14 0+9+5+7

4 21 0+9+5+7+4

5 25 0+9+5+7+4+2

6 27 stop

Input = [9,5,7,4,2]

Termination: sum from 1 to n
sum = 0+9+5+7+4+2
Holds True!!

Example loop invariants with summation
sum = 0
for i=1 to length[A]

sum = sum + A[i]







1

1

][
i

m

mAsum
A loop invariant is
before running at loop i ,

Let us check
theoretically

Initialization: at loop 1, sum = 0 (True!!)
Maintenance:

If at before running loop i , sum = A[1]+A[2]+…+A[i-1]
then after running loop i , sum = A[1]+A[2]+…+A[i-1]+A[i]
Hence, before running loop i+1 , sum = A[1]+A[2]+…+A[i-1]+A[i] (True!!)

Termination:
Goal(output of program) =>

At start of running at loop n+1, sum = A[1]+A[2]+…+A[n-1]+A[n] (True!!)





n

i

iAsum
1

][

Exercise: Loop variant with Max Array

• Write a pseudo code of an algorithm for
finding a maximal number in an array of size n.

• Write a proof of the correctness of the
algorithm using loop invariants.

max = A[1]
for i=2 to length[A]

if max < A[i]
max = A[i]

Solution: Loop variant with Max Array
max = A[1]
for i=2 to length[A]

if max < A[i]
max = A[i]

Loop Invariant = Before running loop i , max is the largest number from A[1] to A[i-1]

Initialization:
Before running first loop where i=2 , max = A[1] which is the maximum number of A[2-1] (True!!)

Maintenance:
If before running loop i , max is the largest number among A[1] to A[i-1]
then after running loop i, if max < A[i] then max = A[i] which is the largest of A[1… i]

if max > A[i] then max does not change and it is the largest of A[1…i].
Hence before running loop i+1, max is is the largest number among A[1] to A[i] (True!!)

Termination: at starting of loop n+1, max is the largest number among A[1] to A[n] (True!!)

Exercise: Insertion-Sort

for j=2 to length[A]
do key = A[j]

i = j - 1
while i > 0 and A[i] > key

do A[i+1] = A[i]
i = i - 1

A[i+1]=key

initialization

mainte-
nance

termination

A loop invariant =
all elements in A[1 … j – 1] are in sorted order.

Exercise loop invariants with
insertion-sort

for j=2 to length[A]
do key = A[j]

i = j - 1
while i > 0 and A[i] > key

do A[i+1] = A[i]
i = i - 1

A[i+1]=key

Exercise loop invariants with
insertion-sort

Input = [9,5,7,4,2]

A loop invariant =
all elements in A[1 … j – 1] are in sorted order.

j key A[1 to j-1] (before) i A[i] > key A[1 to j-1] (after) A[1… n]

2

3

4

5

