Ch8: Recurrences

305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

What is Recurrences?

- A recurrence is an equation or inequality that that describes a function in terms of its value on smaller inputs.
- Example:

$$
\begin{array}{ll}
\mathrm{T}(\mathrm{n})=\Theta(1) & \text { if } \mathrm{n}=1 \\
& 2 T(n / 2)+\Theta(n)
\end{array} \text { if } \mathrm{n}>1 .
$$

We can write $T(n)$ in terms of $\Theta(n \lg n)$

Methods for solving Recurrences

- Substitution method
- Guess the form of the solution and use mathematical induction to find constants to prove the solution.
- Recursion-tree method
- Each node represents the cost of a single subproblem. We sum the costs within each level of the tree to obtain a set of per-level costs, and sum all the per-level costs to determine the total cost.
- Master method
- Provides a "cookbook" method for solving recurrences of the form $T(n)=a T(n / b)+f(n)$, where $a \geq 1$ and $b>1$ are constants and $\mathrm{f}(\mathrm{n})$ is an asymptotically positive function.

Example: Substitution of Merge-Sort

- Let the recurrence $T(n)=2 T(\lfloor n / 2\rfloor)+n$
- We guess that the solution is $T(n)=O(n \lg n)$
- Must prove that $T(n) \leq c n \lg n$ for choosing a constant c >0.
- Start by assuming that this bound, cn $\lg \mathrm{n}$, holds for $\lfloor n / 2\rfloor$
- Then substitute into the recurrence yields:

$$
\begin{aligned}
T(n) & \leq 2(c\lfloor n / 2] \lg ([n / 2\rfloor))+n \\
& \leq c n \lg (n / 2)+n \\
& =c n \lg n-c n \lg 2+n \\
& =c n \lg n-c n+n \\
& \leq c n \lg n
\end{aligned}
$$

- Where the last step holds as long as c>=1.

Example: Recursion Tree of Merge-Sort

The Master Method

- Provides a "cookbook" method for solving recurrences of the form

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1$ and $b>1$ are constants and $f(n)$ is an asymptotically positive function.

- This recurrence form describes the running time of an algorithm that divides a problem of size n into a subproblems, each of size n / b.
- The master method are used in 3 cases:
$\mathrm{f}(\mathrm{n})<n^{\log _{b} a}, \mathrm{f}(\mathrm{n})=n^{\log _{b} a}$, and $\mathrm{f}(\mathrm{n})>n^{\log _{b} a}$

Master Theorem

- Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

where we interpret n / b to mean either $\lfloor n / b\rfloor$ or $[n / b\rceil$.
Then $T(n)$ can be bounded asymptotically as follows.

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$ then

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$ and if $\mathrm{af}(\mathrm{n} / \mathrm{b}) \leq \mathrm{cf}(\mathrm{n})$ for some constant $\mathrm{c}<1$ and all sufficiently large n , then $\quad T(n)=\Theta(f(n))$

Example: Master method (case1)

- Let

$$
T(n)=9 T(n / 3)+n
$$

- Determine which case of the master theorem applies:
- We have $a=9, b=3, f(n)=n$
- Thus we have $n^{\log _{b} a}=n^{\log _{3} 9}=\Theta\left(n^{2}\right)$

เหมือนกับใชวใให้หหนนว่า
$f(n)=n$ อยู่ใน
$O\left(n^{2-e}\right)$ เมื่อสมมติให้ e คือค่าคงที่

- Since $f(n)=O\left(n^{\log _{3} 9-\varepsilon}\right)$, where $\varepsilon=1$, we can apply case 1 of the master theorem and conclude that the solution is

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{2}\right)
$$

Example: Master method (case 2)

- Let $T(n)=T(2 n / 3)+1$
- Determine which case of the master theorem applies:
- We have $a=1, b=3 / 2, f(n)=1$
- Thus we have $n^{\log _{b} a}=n^{\log _{3 / 2} 1}=n^{0}=1$
- Since $f(n)=\Theta\left(n^{0}\right)=\Theta(1)$ we can apply case 2 of the master theorem and conclude that the solution is $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)=\Theta(\lg n)$

Example: Master method (case 3)

- Let

$$
T(n)=3 T(n / 4)+n \lg n
$$

- Determine which case of the master theorem applies:
- We have $a=3, b=4, f(n)=n \lg n$
- Thus we have $\quad n^{\log _{b} a}=n^{\log _{4} 3}$
- Since $f(n)=\Omega\left(n^{\log _{4} 3+\varepsilon}\right)$ where $\varepsilon \approx 0.2$ we can apply case 3 of the master theorem.
- We show that: $3(n / 4) \lg (n / 4)<=(3 / 4) n \lg n$, for $\mathrm{c}=3 / 4$
- Following case 3 , we conclude that the solution is

$$
T(n)=\Theta(f(n))=\Theta(n \lg n)
$$

Practice: Master method

- Let

$$
T(n)=4 T(n / 3)+5 n
$$

- Let

$$
T(n)=3 T(n / 3)+5 n
$$

- Let

$$
T(n)=2 T(n / 3)+5 n
$$

Practice: Master method

- Let $\quad T(n)=4 T(n / 3)+5 n$
- We have $a=4, b=3, f(n)=5 n$

$$
n^{\log _{b} a}=n^{\log _{3} 4}=n^{1.26}
$$

- We guess it might be case 3:
- Since $f(n) \notin \Omega\left(n^{\log _{3} 4+\varepsilon}\right)$, where $\varepsilon=0.2$.
- Hence we check for case 1:
- Since $f(n)=O\left(n^{\log _{3} 4-\varepsilon}\right)$, where $\varepsilon=1,\left(n^{\log _{3} 4-1}=n\right.$). we can apply case 1 of the master theorem and conclude that the solution is

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{3} 4}\right)
$$

Practice: Master method

- Let

$$
T(n)=3 T(n / 3)+5 n
$$

- We have $a=3, b=3, f(n)=5 n$

$$
n^{\log _{b} a}=n^{\log _{3} 3}=n^{1}
$$

- We guess it might be case 2 :
- Since $f(n)=\Theta\left(n^{\log _{3} 3}\right)$, $\left(n^{\log _{3} 3}=n\right)$, hence we can apply case 2 of the master theorem and conclude that the solution is

$$
T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)=\Theta(n \lg n)
$$

Practice: Master method

- Let

$$
T(n)=2 T(n / 3)+5 n
$$

- We have $a=2, b=3, f(n)=5 n$

$$
n^{\log _{b} a}=n^{\log _{3} 2}=n^{0.63}
$$

- We guess it might be case 3:
- Since $f(n)=\Omega\left(n^{\log _{3} 2+\varepsilon}\right)$, where $\varepsilon=1,\left(n^{\log _{3} 3}=n\right.$), and $2(5 n / 3)<=(2 / 3) 5 n$, for $c=2 / 3$
- hence we can apply case 3 of the master theorem and conclude that the solution is

$$
T(n)=\Theta(f(n))=\Theta(5 n)
$$

