# Ch9: Probabilistic Analysis and Randomized Algorithms 

305234<br>Algorithm Analysis and Design<br>Jiraporn Pooksook<br>Naresuan University

## Worst-case vs. Average-case running time

- We are normally interested in the worst case running time with input size $n$ of an algorithm.
- For example, the worst case running time of insertion sort is when an input is in descending order for sorting from the lowest to the highest numbers.
- However, we could be interested in average case running time by measuring typical inputs.
- Typical inputs are assumed that all permutations of input are equally likely.
- Can we improve worst-case by adding randomization?


## The Hiring Problem

- Suppose you need to hire a new office assistant.
- One candidate walks in each day.
- You will interview that person and decide to either hire that person or not.
- After interviewing, if that person is better qualified than your current assistant, you will fire the current assistant and hire the new applicant.
- You must pay a small fee if you don't hire that applicant.
- You must pay a large fee if you hire that applicant.


## The Hiring Problem

```
Pseudo code: Hire-Assistant(n)
best = 0 // dummy candidate
for i=1 to n
    do interview candidate i
    if candidate i is better than candidate best
    then best = i
        hire candidate i
```

```
We do not focus on the running time but more on the costs incurring by interviewing and hiring.
```


## Cost of the Hiring Problem

- Let $\mathrm{c}_{\mathrm{i}}$ is denoted as an interviewing cost.
- Let $c_{h}$ is denoted as a hiring cost.
- Let $m$ be the number of people hired.
- Total cost is $\mathrm{O}\left(\mathrm{n}_{\mathrm{i}}+\mathrm{m} \mathrm{c}_{\mathrm{h}}\right)$
- In the worst-case, we hire every candidate that we interview. A total hiring cost will be $\mathrm{O}\left(\mathrm{nc}_{\mathrm{h}}\right)$.
- It is reasonable to expect that the candidates do not always come in increasing order of quality.


## Probabilistic Analysis

- Probabilistic analysis is the use of probability in the analysis of algorithm.
- It is commonly used to analyze the running time of algorithms.
- It can be used to analyze other quantities such as the cost of procedures.
- We must use knowledge of, or make assumptions about the distributions of inputs for using probabilistic analysis.
- We can then make an average-case analysis, averaging the cost over all possible inputs.


## Probabilistic Analysis

- For the hiring problem, we can assume that the candidates walk in a random order. This means that we assume that we can compare any two candidates and decide which one is better; there is a total order on the candidates.
- Then we can rank each candidate with a unique number from 1 to $n$. We use rank(i) to denote the rank of applicant i .
- A higher rank corresponds to a better qualified applicant.
- The order list $(\operatorname{rank}(1), \operatorname{rank}(2), \ldots, \operatorname{rank}(n))$ is a permutation of the list ( $1,2, \ldots, \mathrm{n}$ ).
- Therefore saying that the applicants come in a random order is equivalent to saying that this list of ranks is equally likely to be any one of the $n$ ! permutations of 1 to $n$ (the ranks form a uniform random permutation; each of the possible $n$ ! permutations appears with equal probability).


## Randomized Algorithms

- In the hiring problem, it may seem as if the candidates walks in a random order, but we cannot be sure about it.
- In order to develop a randomized algorithm for the hiring problem, we must control over the order in which we interview the candidates.
- Hence, we change the model by giving the list of candidates in advance. On each day we choose randomly which candidate to interview.


## Randomized Algorithms: The Hiring Problem

```
Pseudo code: Randomized-Hire-Assistant(n)
randomly permute the list of candidates
best = 0 // dummy candidate
for i = 1 to n
    do interview candidate i
    if candidate i is better than candidate best
        then best = i
        hire candidate i
```


## Randomized Algorithms

- We call an algorithm randomized if its behavior is determined not only by its input but also by values produced by a random-number generator.
- For example, random $(0,1)$ produces 0 or 1 with probability $1 / 2$. Each integer returned by random is independent of the integers returned on previous calls.
- Most programming environments offer a (deterministic) pseudorandom-number generator: it returns numbers that "look" statistically random.


## Randomized Algorithms

- We typically refer to the analysis of randomized algorithms by talking about the expected cost (ex: the expected running time).
- We can use probabilistic analysis to analyse randomized algorithms.


## Basic of Probabilistic: Permutation

- A permutation of a finite set $S$ is an ordered sequence of all the elements of $S$, with each element appearing exactly once.
- If $S=\{a, b, c\}$, then there are 6 permutations of $S$ :
- abc, acb, bac, bca, cab, cba
- A k-permutation of $S$ is an ordered sequence of $k$ elements of $S$, with no element appearing more than once in the sequence.
- If $S=\{a, b, c, d\}$, then there are 12 2-permutations of $S$ :
- ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc


## Basic of Probabilistic : Permutation

- The number of k-permutation of an $n$-set is

$$
n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

- Since there are $n$ ways of choosing the $1^{\text {st }}$ element, $\mathrm{n}-1$ ways of choosing the $2^{\text {nd }}$ element and so on until $k$ elements are selected, the last being a selection from $n-k+1$ elements.


## Basic of Probabilistic: Combination

- A k-combination of an $n$-set $S$ is a $k$-subset of S.
- If $S=\{a, b, c, d\}$, then there are 6 2-combinations of $S$ :
$-\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}$ or
- ab, ac, ad, bc, bd, cd
- The number of $k$-combinations of an n-set can be expressed in terms of the number of $k$ permutations of an $n$-set:

$$
\frac{n!}{k!(n-k)!}
$$

## Basic of Probabilistic Analysis: Binomial coefficient

- We use the notation " n choose k " to denote the number of $k$-combinations of an $n$-set.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

- This formula is symmetric in k and $\mathrm{n}-\mathrm{k}:\binom{n}{k}=\binom{n}{n-k}$
- These numbers are known as binomial coefficients due to their appearrence in the binomial expansion:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

## Basic of Probabilistic Analysis

- Consider rolling a dice and observing the results.
- We call this an experiment.
- It has 6 possible outcomes: 1,2,3,4,5,6
- Each of these outcomes has probability $1 / 6$ (assuming fair dice)
- Again we roll two dice and there is 36 possible outcomes: 1-1, 1-2, 1-3,1-4,1-5,1-6,2-1,...,6-5,6-6.
- Each of these outcomes has probability $1 / 6$ (assuming fair dice)
- What is the probability of the sum of dice being 7?

```
Add the probabilities of all the outcomes satisfying this
condition: 1-6, 2-5, 3-4, 4-3, 5-2, 1-6 (probability is 1/6)
```


## Basic of Probabilistic Analysis



## Basic of Probabilistic Analysis

- A sample space $S$ is a set whose elements are called elementary events, all possible outcomes.
- Each elementary event can be viewed as a possible outcome of an experiment.
- An event is a subset of the sample space $S$.
- For example, rolling two dice:
- A sample space $S=\{1-1,1-2,1-3,1-4,1-5,1-6$, 2-1,...,6-5,6-6\}
- The event of obtaining same number of both dice is $\{1-1,2-2,3-3,4-4,5-5,6-6\}$.


## Example: Monty Hall Problem

- There are 3 doors and the big price is behind 1 door out of 3.
- The player chooses 1 door.
- One door is revealed.
- The player is asked to stay or change his/her choice.
- Question: The chance to win the price will be $1 / 2$ or $2 / 3$ if the player chooses to change?


## Example: Monty Hall Problem

If switch, $\operatorname{pr}($ win $)=1 / 2$ ?


## Example: Monty Hall Problem

 If switch, $\mathrm{pr}($ win $)=\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{1}{9}=\frac{2}{3}$

## Example: 3 Games

- In a best 2 out of 3 series, the probability of winning the $1^{\text {st }}$ game is $1 / 2$. The probability of winning a game following a win is $2 / 3$. The probability of winning a game after a loss is 1/3.


## Example: 3 Games




## Basic of Probabilistic Analysis

- We say that two events $A$ and $B$ are mutually exclusive if $A \cap B=\emptyset$.
- A probability distribution $\operatorname{Pr}\}$ on a sample space $S$ is a mapping from events of $S$ to real numbers such that the following probability axioms are satisfied:
$-\operatorname{Pr}\{A\} \geq 0$ for any event A .
$-\operatorname{Pr}\{\mathrm{S}\}=1$
$-\operatorname{Pr}\{A \cup B\}=\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}$ for any two mutually exclusive events $A$ and $B$.


## Basic of Probabilistic Analysis

- Suppose each of elementary events of tossing two dice has probability $1 / 36$. Then the probability of getting same number on both dice is
- $\operatorname{Pr}\{1-1,2-2,3-3,4-4,5-5,6-6\}=$

$$
\begin{aligned}
& \operatorname{Pr}\{1-1\}+\operatorname{Pr}\{2-2\}+\operatorname{Pr}\{3-3\}+ \\
& \operatorname{Pr}\{4-4\}+\operatorname{Pr}\{5-5\}+\operatorname{Pr}\{6-6\} \\
& =1 / 36 * 6=1 / 6
\end{aligned}
$$

## Basic of Probabilistic Analysis

- A probability distribution is discrete if it is defined over a finite or countably infinite sample space.
- Let $S$ be a sample space. Then for any event $A$,

$$
\operatorname{Pr}\{A\}=\sum_{s \in A} \operatorname{Pr}\{s\}
$$

- Since elementary events are mutually exclusive. If $S$ is finite and every elementary $s \in S$ has probability

$$
\operatorname{Pr}\{S\}=1 /|S|
$$

- Then we have the uniform probability distribution on $S$, as "picking an element of $S$ at random".


## Basic of Probabilistic Analysis

- Consider the example of tossing a dice, the probability of obtaining each number is $1 / 6$.
- If we roll the dice $n$ times, we have the uniform probability distribution defined on the sample space $S=\left\{1,2,3,4,5,6^{3 n}\right.$, a set of size $6^{n}$.
- Each elementary event occurs with probability 1 / $6^{n}$.
 occur for $i=1 \ldots 6\}$ is a subset of $S$ of size $|A|=6$. The probability of event $A$ is thus

$$
\operatorname{Pr}\{A\}=6 / 6^{n}=1 / 6^{n-1} .
$$

## Example: Toss 3 coins



## Random var vs Indicator random var



## Basic of Probabilistic: Random variable

- $A$ (discrete) random variable $X$ is a function from a finite or countably infinite sample space $S$ to the real numbers.
- For example, let $X_{1}$ be a random variable representing the result of the $1^{\text {st }}$ dice, and $X_{2}$ represent the result of the $2^{\text {nd }}$ dice.
- Let $X$ be a random variable representing the sum of two dice: $X=X_{1}+X_{2}$.


## Basic of Probabilistic: Random variable

- For a random variable $X$ and a real number $x$, we define the event $X=x$ to be $\{s \in S: X(s)=x\}$, thus

$$
\operatorname{Pr}\{X=x\}=\sum_{s \in S: X(s)=x} \operatorname{Pr}\{s\}
$$

- The function $f(x)=\operatorname{Pr}\{X=x\}$ is the probability density function of the random variable $X$.
From the probability axioms,

$$
\operatorname{Pr}\{\mathrm{X}=\mathrm{x}\} \geq 0 \text { and } \sum_{x} \operatorname{Pr}\{X=x\}=1
$$

## Basic of Probabilistic: Random variable

- For example, rolling two dice there are 36 possible elementary events in the sample space. We assume that the probability distribution is uniform, so that each elementary event $s \in S$ is equally likely: $\operatorname{Pr}\{s\}=1 / 36$.
- Let $X$ be the random variable representing the maximum of two values showing on the dice.
- We have $\operatorname{Pr}\{X=3\}=5 / 36$ since the possible elementary events are $\{1-3,2-3,3-3,3-2,3-1\}$.


## Basic of Probabilistic: Random variable

- If $X, Y$ are random variables, the function $F(x, y)=\operatorname{Pr}\{X=x$ and $Y=y\}$ is the joint probability density function of $X$ and $Y$.
- For a fix value $y$,

$$
\operatorname{Pr}\{\mathrm{Y}=\mathrm{y}\}=\sum_{x} \operatorname{Pr}\{X=x \text { and } Y=y\}
$$

- And similarly for a fix value x ,

$$
\operatorname{Pr}\{\mathrm{X}=\mathrm{x}\}=\sum_{y} \operatorname{Pr}\{X=x \text { and } Y=y\}
$$

Two random variables $X, Y$ are independent if for all $x$ and $y$, the event $X=x$ and $Y=y$ are independent:

$$
\operatorname{Pr}\{X=x \text { and } Y=y\}=\operatorname{Pr}\{X=x\} \operatorname{Pr}\{Y=y\}
$$

## Basic of Probabilistic: Expectation

- The expected value(or, expectation or mean) of a discrete random variable X is

$$
\mathrm{E}[\mathrm{X}]=\sum_{x} \mathrm{x} \operatorname{Pr}\{X=x\}
$$

- For example, in a game of flipping two fair coins. You earn \$3 for each head but lose \$2 for each tail. The expected value of $X$ is
- $\mathrm{E}[\mathrm{X}]=6 . \operatorname{Pr}\{\mathrm{HH}\}+1 . \operatorname{Pr}\{1 \mathrm{H}, 1 \mathrm{~T}\}-4 . \operatorname{Pr}\{\mathrm{TT}\}$

$$
=6(1 / 4)+1(1 / 2)-4(1 / 4)=1
$$

## Basic of Probabilistic: Expectation

- The linearity of expectation property: the expectation of the sum of two random variables is the sum of their expectations:

$$
\mathrm{E}[\mathrm{X}+\mathrm{Y}]=E[X]+E[Y]
$$

- If $X$ is any random variable, any function $g(x)$ defines a new random variable $g(X)$. If the expectation of $g(X)$ is defined, then

$$
\mathrm{E}[\mathrm{~g}(\mathrm{X})]={ }_{\mathrm{E}[\mathrm{~g}(\mathrm{X})]}=\sum_{x} g(x) \operatorname{Pr}\{X=x\}
$$

## Basic of Probabilistic: Expectation

- Let $g(x)=a x$, we have for any constant $a$,

$$
\mathrm{E}[\mathrm{aX}]=\mathrm{aE}[\mathrm{X}]
$$

- When two random variables $X, Y$ are independent and each has a defined expectation,

$$
\mathrm{E}[\mathrm{XY}]=\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]
$$

- The variance, expressing how far from the mean, of a random variable $X$ with mean $E[X]$ is

$$
\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[\mathrm{X}^{2}\right]-\mathrm{E}^{2}[\mathrm{X}]
$$

$$
\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}] \text { if } \mathrm{X}, \mathrm{Y} \text { are independent }
$$

The standard deviation of a random variable $X$ is the nonnegative square root of the variance of $X$.

## Basic of Probabilistic: Expectation

- For example, if we have random variables $X, Y$ for which $\operatorname{Pr}\{X=1 / 4\}=\operatorname{Pr}\{X=3 / 4\}=1 / 2$ and $\operatorname{Pr}\{Y=0\}=\operatorname{Pr}\{Y=1\}=1 / 2$.
- Then $E[X]=1 / 4 \cdot 1 / 2+3 / 4.1 / 2=1 / 2$


$$
E[Y]=0.1 / 2+1.1 / 2=1 / 2 .
$$

- However, the actual values taken on by $Y$ are farther from the mean than the actual values taken on by $X$.
- Compute its variance :

$$
\begin{aligned}
& \mathrm{E}\left[\mathrm{X}^{2}\right]=(1 / 4)^{2} \cdot 1 / 2+(3 / 4)^{2} \cdot 1 / 2=5 / 16 \\
& \operatorname{Var}[\mathrm{X}]=5 / 16-(1 / 2)^{2}=1 / 16 \\
& \mathrm{E}\left[\mathrm{Y}^{2}\right]=0.1 / 4+1^{2} \cdot 1 / 2=1 / 2 \quad \mathrm{Y} \\
& \operatorname{Var}[\mathrm{Y}]=1 / 2-(1 / 2)^{2}=1 / 4 \quad \operatorname{Pr}(\mathrm{Y}) \\
& \hline
\end{aligned}
$$

## Basic of Probabilistic: geometric dist.

- A Bernoulli trial is defined as an experiment with only two possible outcomes: success, which occurs with probability $p$, and failure, which occurs with probability $q=1-p$.
- Suppose we have a sequence of Bernoulli trials. How many trails occur before we obtain a success?
- Let the random variable $X$ be the number of trails needed to obtain a success. Then

$$
\begin{aligned}
& \operatorname{Pr}\{X=k\}=q^{k-1} p, \\
& \text { since we have } k-1 \text { failures before success }
\end{aligned}
$$

- This probability distribution is called the geometric distribution.


## Basic of Probabilistic: geometric dist.

- Assuming that $\mathrm{q}<1$, the expectation of a geometric distribution is:

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] & =\sum_{k=1}^{\infty} k q^{k-1} p \\
& =\frac{p}{q} \sum_{k=1}^{\infty} k q^{k} \\
= & \frac{p}{q} \cdot \frac{q}{(1-q)^{2}} \\
& =1 / p
\end{aligned}
$$

- Thus on average, it takes $1 / \mathrm{p}$ trails before we obtain a success.
- The variance is

$$
\operatorname{Var}[X]=q / p^{2}
$$

## Basic of Probabilistic: geometric dist.

- For example, suppose we repeatedly roll two dice until we obtain either 7 or 11.
- There are 6 possible outcomes yielding 7 and 2 possible outcomes yielding 11.
- Thus, the probability of success is $p=8 / 36=2 / 9$.
- We must roll $1 / p=9 / 2=4.5$ times on average to obtain 7 or 11.


## Basic of Probabilistic: binomial dist.

- Suppose we have a sequence of Bernoulli trials. How many successes occur during n Bernoulli trails where a success occurs with probability $p$ and a failure with probability $q=1-p$ ?
- Let the random variable $X$ be the number of successes in n trails. Then

$$
\operatorname{Pr}\{X=k\}=\binom{n}{k} p^{k} q^{n-k}
$$

since there are $\binom{n}{k}$ ways to pick which $k$ of the $n$ trails are successes, and the probability that each occurs is $p^{k} q^{n-k}$.

- This probability distribution is called the binomial distribution.


## Basic of Probabilistic: binomial dist.

- For convenience, the family of binomial distributions use the notation:

$$
\mathrm{b}(\mathrm{k} ; \mathrm{n}, \mathrm{p})=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- The expectation of a random variable having a binomial distribution is: $E[X]=n p$.
- Hence its variance is :

$$
\operatorname{Var}[\mathrm{X}]=\mathrm{npq} .
$$

