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Worst-case vs. Average-case running 
time

• We are normally interested in the worst case running 
time with input size n of an algorithm.

• For example, the worst case running time of insertion 
sort is when an input is in descending order for sorting 
from the lowest to the highest numbers. 

• However, we could be interested in average case 
running time by measuring typical inputs.

• Typical inputs are assumed that all permutations of 
input are equally likely. 

• Can we improve worst-case by adding randomization?



The Hiring Problem

• Suppose you need to hire a new office assistant. 
• One candidate walks in each day. 
• You will interview that person and decide to 

either hire that person or not.
• After interviewing, if that person is better 

qualified than your current assistant, you will fire 
the current assistant and hire the new applicant.

• You must pay a small fee if you don’t hire that 
applicant.

• You must pay a large fee if you hire that applicant.



The Hiring Problem

Pseudo code: Hire-Assistant(n)
best = 0 // dummy candidate
for i = 1 to n 

do interview candidate i
if candidate i is better than candidate best

then best = i
hire candidate i

We do not focus on the running time but 
more on the costs incurring by 

interviewing and hiring.



Cost of the Hiring Problem

• Let ci is denoted as an interviewing cost.
• Let  ch is denoted as a hiring cost.
• Let m be the number of people hired.
• Total cost is O(n ci +m ch )
• In the worst-case, we hire every candidate that 

we interview. A total hiring cost will be O(n ch).
• It is reasonable to expect that the candidates do 

not always come in increasing order of quality.



Probabilistic Analysis

• Probabilistic analysis is the use of probability in 
the analysis of algorithm.

• It is commonly used to analyze the running time 
of algorithms.

• It can be used to analyze other quantities such as 
the cost of procedures.

• We must use knowledge of, or make assumptions 
about the distributions of inputs for using 
probabilistic analysis.

• We can then make an average-case analysis, 
averaging the cost over all possible inputs.



Probabilistic Analysis
• For the hiring problem, we can assume that the candidates 

walk in a random order. This means that we assume that we 
can compare any two candidates and decide which one is 
better; there is a total order on the candidates.

• Then we can rank each candidate with a unique number from 
1 to n. We use rank(i) to denote the rank of applicant i. 

• A higher rank corresponds to a better qualified applicant. 
• The order list ( rank(1), rank(2),…,rank(n)) is a permutation of 

the list (1,2,…,n). 
• Therefore saying that the applicants come in a random order 

is equivalent to saying that this list of ranks is equally likely to 
be any one of the n! permutations of 1 to n  (the ranks form a 
uniform random permutation; each of the possible n! 
permutations appears with equal probability).



Randomized Algorithms

• In the hiring problem, it may seem as if the 
candidates walks in a random order, but we 
cannot be sure about it.

• In order to develop a randomized algorithm for 
the hiring problem, we must control over the 
order in which we interview the candidates.

• Hence, we change the model by giving the list of 
candidates in advance. On each day we choose 
randomly which candidate to interview.



Randomized Algorithms: The Hiring 
Problem

Pseudo code: Randomized-Hire-Assistant(n)
randomly permute the list of candidates
best = 0 // dummy candidate
for i = 1 to n 

do interview candidate i
if candidate i is better than candidate best

then best = i
hire candidate i



Randomized Algorithms

• We call an algorithm randomized if its behavior is 
determined not only by its input but also by 
values produced by a random-number generator.

• For example, random(0,1) produces 0 or 1 with 
probability ½. Each integer returned by random is 
independent of the integers returned on previous 
calls.

• Most programming environments offer a 
(deterministic) pseudorandom-number 
generator: it returns numbers that “look” 
statistically random.



Randomized Algorithms

• We typically refer to the analysis of 
randomized algorithms by talking about the 
expected cost (ex: the expected running time).

• We can use probabilistic analysis to analyse
randomized algorithms.



Basic of Probabilistic: Permutation

• A permutation of a finite set S is an ordered 
sequence of all the elements of S, with each 
element appearing exactly once.

• If S={a,b,c}, then there are 6 permutations of S:
– abc, acb, bac, bca, cab, cba

• A k-permutation of S is an ordered sequence of k 
elements of S, with no element appearing more 
than once in the sequence.

• If S = {a,b,c,d}, then there are 12 2-permutations 
of S:
– ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc



Basic of Probabilistic : Permutation

• The number of k-permutation of an n-set is

• Since there are n ways of choosing the 1st

element, n-1 ways of choosing the 2nd element 
and so on until k elements are selected, the 
last being a selection from n-k+1 elements.
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Basic of Probabilistic: Combination

• A k-combination of an n-set S is a k-subset of 
S.

• If S={a,b,c,d}, then there are 6 2-combinations 
of S:
– {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}    or
– ab, ac, ad, bc, bd, cd

• The number of k-combinations of an n-set can 
be expressed in terms of the number of k-
permutations of an n-set:
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Basic of Probabilistic Analysis: 
Binomial coefficient

• We use the notation “n choose k” to denote the 
number of k-combinations of an n-set.

• This formula is symmetric in k and n-k:

• These numbers are known as binomial 
coefficients due to their appearrence in the 
binomial expansion:
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Basic of Probabilistic Analysis

• Consider rolling a dice and observing the results. 
• We call this an experiment. 
• It has 6 possible outcomes: 1,2,3,4,5,6
• Each of these outcomes has probability 1/6 (assuming 

fair dice)
• Again we roll two dice and there is 36 possible 

outcomes: 1-1, 1-2, 1-3,1-4,1-5,1-6,2-1,…,6-5,6-6.
• Each of these outcomes has probability 1/6 (assuming 

fair dice)
• What is the probability of the sum of dice being 7?

Add the probabilities of all the outcomes satisfying this 
condition: 1-6, 2-5, 3-4, 4-3, 5-2, 1-6 (probability is 1/6)



Basic of Probabilistic Analysis
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Basic of Probabilistic Analysis

• A sample space S is a set whose elements are 
called elementary events, all possible outcomes.

• Each elementary event can be viewed as a 
possible outcome of an experiment.

• An event is a subset of the sample space S.
• For example, rolling two dice:
• A sample space S = {1-1, 1-2, 1-3, 1-4, 1-5, 1-6,

2-1,…,6-5,6-6}
• The event of obtaining same number of both dice 

is {1-1,2-2,3-3,4-4,5-5,6-6}.

Elementary 
event

event



Example: Monty Hall Problem

• There are 3 doors and the big price is behind 1 
door out of 3.

• The player chooses 1 door.
• One door is revealed.
• The player is asked to stay or change his/her 

choice.
• Question:  The chance to win the price will be 

½ or 2/3 if the player chooses to change?



Example: Monty Hall Problem

Box/Price Player choice Revealed
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If switch, pr(win)= ½? 
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Example: 3 Games

• In a best 2 out of 3 series, the probability of 
winning the 1st game is ½. The probability of 
winning a game following  a win is 2/3. The 
probability of winning a game after a loss is 
1/3. 



Example: 3 Games
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Example: 3 Games
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A = event win series
B = event win 1st game
Pr(A|B)=?

Pr(A|B)= P(A and B) / P(B)
=  (2/9+1/9+1/18)/ (9/18)
= 7/9



Basic of Probabilistic Analysis

• We say that two events A and B are mutually 
exclusive if                          .

• A probability distribution Pr{} on a sample space 
S is a mapping from events of S to real numbers 
such that the following probability axioms are 
satisfied:
– Pr{A} ≥ 0 for any event A.
– Pr{S} = 1
– Pr{            } = Pr{A} + Pr{B} for any two mutually 

exclusive events A and B.

 

 



Basic of Probabilistic Analysis

• Suppose each of elementary events of tossing 
two dice has probability 1/36. Then the 
probability of getting same number on both 
dice is

• Pr{1-1,2-2,3-3,4-4,5-5,6-6} = 
Pr{1-1} + Pr{2-2}+Pr{3-3}+
Pr{4-4}+Pr{5-5}+Pr{6-6}
= 1/36*6 = 1/6



Basic of Probabilistic Analysis

• A probability distribution is discrete if it is defined 
over a finite or countably infinite sample space.

• Let S be a sample space. Then for any event A,

• Since elementary events are mutually exclusive. If S is 
finite and every elementary  s ϵ S  has probability

Pr{S} = 1/|S|

• Then we have the uniform probability distribution on S, 
as “picking an element of S at random”.

 



Basic of Probabilistic Analysis

• Consider the example of tossing a dice, the 
probability of obtaining each number is 1/6. 

• If we roll the dice n times, we have the uniform 
probability distribution defined on the sample 
space S ={1,2,3,4,5,6}n, a set of size 6n.

• Each elementary event occurs with probability 1/ 
6n. 

• Therefore, the event A = {exactly n number of i
occur for i = 1…6 } is a subset of S of size|A|= 6. 
The probability of event A is thus 

Pr{A}=6/ 6n= 1/ 6n-1.



Example: Toss 3 coins
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Random variable
R = number of H
R(H,T,H) = 2

Random variable
(Indicator random var or 
Bernoulli random var )

M = 1 if all coins match
= 0  otherwise

M(H,H,T) = 0
M(T,T,T) =1



Random var vs Indicator random var
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Basic of Probabilistic: Random variable

• A (discrete) random variable X is a function 
from a finite or countably infinite sample 
space S to the real numbers.

• For example, let X1 be a random variable 
representing the result of the 1st dice, and X2
represent the result of the 2nd dice.

• Let X be a random variable representing the 
sum of two dice: X = X1 + X2.



Basic of Probabilistic: Random variable

• For a random variable X and a real number x, 
we define the event X = x to be {s ϵ S: X(s) = x}, 
thus

• The function f(x) = Pr{X=x} is the probability 
density function of the random variable X. 
From the probability axioms, 

Pr{X=x} ≥ 0 and 

 

 



Basic of Probabilistic: Random variable

• For example, rolling two dice there are 36 
possible elementary events in the sample space. 
We assume that the probability distribution is 
uniform, so that each elementary event s ϵ S is 
equally likely: Pr{s} = 1/36. 

• Let X be the random variable representing the 
maximum of two values showing on the dice. 

• We have Pr{X=3} = 5/36 since the possible 
elementary events are {1-3, 2-3, 3-3, 3-2, 3-1}.



Basic of Probabilistic: Random variable

• If X, Y are random variables, the function
F(x,y) = Pr{X=x and Y=y} is the joint probability 
density function of X and Y.

• For a fix value y, 
Pr{Y=y} = 

• And similarly for a fix value x,
Pr{X=x}=

Two random variables X, Y are independent if for all 
x and y, the event X=x and Y=y are independent: 

𝑥

 

𝑦

 

 



Basic of Probabilistic: Expectation

• The expected value(or, expectation or mean) 
of a discrete random variable X is

• For example, in a game of flipping two fair 
coins. You earn $3 for each head but lose $2 
for each tail. The expected value of X is

• E[X] = 6.Pr{HH} + 1.Pr{1H,1T} – 4. Pr{TT}
= 6(1/4) + 1(1/2) – 4(1/4) = 1

𝑥

 

In average you 
will earn $1 for 

this game.



Basic of Probabilistic: Expectation
• The linearity of expectation property: the 

expectation of the sum of two random 
variables is the sum of their expectations:

• If X is any random variable, any function g(x) 
defines a new random variable g(X). If the 
expectation of g(X) is defined, then

E[g(X)] = 

 

𝑥

 



Basic of Probabilistic: Expectation
• Let  g(x) = ax, we have for any constant a,

E[aX] = aE[X]
• When two random variables X,Y are independent and each 

has a defined expectation,
E[XY] = E[X] E[Y]

• The variance, expressing how far from the mean, of a 
random variable X with mean E[X] is

Var[X] = E[X2] – E2[X]
Var[X+Y] = Var[X]+Var[Y]   if X,Y are independent

The standard deviation of a random variable X is the 
nonnegative square root of the variance of X.



Basic of Probabilistic: Expectation
• For example, if we have random variables X,Y for which 

Pr{X=1/4}=Pr{X=3/4}= ½ and 
Pr{Y=0}=Pr{Y=1} = ½.

• Then E[X] = ¼.1/2 + ¾.1/2 = ½ 
E[Y] = 0.1/2 + 1.1/2 = ½.

• However, the actual values taken on by Y are farther from 
the mean than the actual values taken on by X.

• Compute its variance : 
E[X2] = (1/4)2.1/2 + (3/4)2.1/2 = 5/16
Var[X] = 5/16  - (1/2)2 = 1/16
E[Y2] = 0.1/4 + 12.1/2 = 1/2 
Var[Y] = 1/2  - (1/2)2 = 1/4

X 1/4 3/4

Pr(X) 1/2 1/2

Y 0 1

Pr(Y) 1/2 1/2



Basic of Probabilistic: geometric dist.

• A Bernoulli trial is defined as an experiment with only 
two possible outcomes: success, which occurs with 
probability p, and failure, which occurs with probability 
q=1-p. 

• Suppose we have a sequence of Bernoulli trials. How 
many trails occur  before we obtain a success?

• Let the random variable X be the number of trails 
needed to obtain a success. Then

Pr{X=k}=qk-1 p , 
since we have k-1 failures before success

• This probability distribution is called the geometric 
distribution.



Basic of Probabilistic: geometric dist.

• Assuming that q < 1, the expectation of a geometric 
distribution is: 

• Thus on average, it takes 1/p trails before we obtain a 
success.

• The variance is    Var[X] = q/p2
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Basic of Probabilistic: geometric dist.

• For example, suppose we repeatedly roll two 
dice until we obtain either 7 or 11. 

• There are 6 possible outcomes yielding 7 and 
2 possible outcomes yielding 11. 

• Thus, the probability of success is 
p = 8/36 = 2/9.

• We must roll 1/p = 9/2 = 4.5 times on average 
to obtain 7 or 11. 



Basic of Probabilistic: binomial dist.

• Suppose we have a sequence of Bernoulli trials. How 
many successes occur during n Bernoulli trails where a 
success occurs with probability p and a failure with 
probability q = 1-p?

• Let the random variable X be the number of successes 
in n trails.  Then 

since there are          ways to pick which k of the n 
trails are successes, and the probability that each 
occurs is pk qn-k.

• This probability distribution is called the binomial 
distribution.

𝑘 𝑛−𝑘  

 



Basic of Probabilistic: binomial dist.

• For convenience, the family of binomial 
distributions use the notation:  

• The expectation of a random variable having a 
binomial distribution is : E[X] = np.

• Hence its variance is :
Var[X] = npq.

 


