Ch1ll: Heap and Heap Sort

305233, 305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

What is the (binary) heap?

* The (binary) heap data structure is an array
object that can be viewed as a nearly complete
binary tree. Each node of the tree corresponds to
an element of the array that stores the value in
the node.

* An array A that represents a heap is an object
with two attributes:
— length[A] is the number of elements in the array

— heap-size[A] is the number of elements in the heap
stored within array A.

Example Root i A1)
1

16

Binary Heap

* There are two kinds of binary heaps:
* Max-heaps

— For every node i other than the root,
A[parent(i)] = A[i]

* Min-heaps

— For every node i other than the root,
A[parent(i)] < A[i]

Example: Max-heap

1

16

7

3

Height =lg n

Max-Heapify(A,i)

| = left(i)

r = right(i)

if | < heap-size[A] and A[l] > A[i]
then largest = |

else largest =i

if r < heap-size[A] and A[r] > A[largest]
then largest =r

If largest =i
then exchanged Ali] and A[largest]
Max-Heapify(A,largest)

Example: Max-Heapify(A,2)

4 is not 2 its

children and

14 > 4. Then
we swap them

1

Ali] largest

7 19 (3 2 8 |1

Example: Max-Heapify(A,2)

16

16 |14 (0 4 7 9 (3 2 8 |1

Example: Max-Heapify(A,4)

4 is not 2 its 16
children and
8> 4. Then we

swap them

w largest

4 17 19 |3 |2

Example: Max-Heapify(A,4)

16

16 |14 (10 8 7 9 (3 2 4 1

Analyze: Running time of Max-
Heapify(A,i)

The children’s
subtrees each have
size at most 2n/3.

Analyze: Running time of Max-
Heapify(A,i)

We have T(n)=T12n/3)+1

Determine which case of the master theorem
applies:
We have a=1, b=3/2, f(n)=1

Thus we have nlog”a — nlog3/21 — no — li

Since f(n)=0(n")=0(1) we can apply case
2 of the master theorem and conclude that
the solution is 7'(n) =@(n"**1gn) = O(lgn)

Build-Max-Heap(A)

heap-size[A] = length[A]
for i =|length[4]/2] downto 1
do Max-Heapify(A,i)

Example: Build-Max-Heap(A)

4 11 (3 2 16 9 [l 14 8 7

Example: Build-Max-Heap(A)

4 11 (3 2 16 9 [l 14 8 7

Example: Build-Max-Heap(A)

4 11 (3 1416 9 [0 2 8 |7

Example: Build-Max-Heap(A)

4 11 (3 1416 9 [0 2 8 |7

Example: Build-Max-Heap(A)

4 11 (10 14 16 9 (3 2 18 |7

Example: Build-Max-Heap(A)

4 11 (10 14 16 9 (3 2 18 |7

Example: Build-Max-Heap(A)

4 116 (10 14 7 9 [3 2 8 |1

Example: Build-Max-Heap(A)

4

4 116 (10 14 7 9 [3 2 8 |1

Example: Build-Max-Heap(A)

16 |14 (10 8 7 9 (3 2 4 1

Analyze: Build-Max-Heap(A)

heap-size[A] = length[A]
for i =|length[41/2] downto 1
do Max-Heapify(A,i)

loop invariant =

at the start of each iteration of the for loop of lines 2-3, each node
i+1, i+2,...,n is the root of a max-heap.

Initialization:
Before running loop 1, i= |_n/2J. Each node |_n/2J+1, |_n/2J+2, ..., N is a leaf
and is the root of a trivial max-heap. (True!!)

Maintenance:
if children of node i are numbered higher than |, they are both roots of max-heaps.

The condition required for the call Max-Heapify(A,i) to make node | a max-heap root.
Decrementing in the for loop update reestablishes the loop invariant for the next loop. (True!!)

Termination: at termination, i =0. each node 1,2,....,n Is the root of a max-heap. Node 1 is. (True!!)

Analyze running time: Build-Max-

Heap(A) —
Times
heap-size[A] = length[A] 1
fori=|length[4]/2] downto 1 n/2+1
do Max-Heapify(A,i) n/2.0(lg n)

T(n) =0O(nlg n)

Tight Analysis: an n-element heap has height =
and at most nodes of any height h.

The time required by Max-Heapify when called on a

node of height h is O(h). Thus running time can be
bounded as O(n)

Heapsort(A)

Build-Max-Heap(A)

for i =length[A] downto 2
do exchange A[1] and A[i]
heap-size[A] = heap-size[A] -1
Max-Heapify(A,1)

Example: Heapsort(A)

16 |14 (10 8 7 9 (3 2 4 11

Example: Heapsort(A)

114 (0 08 7 9 [3 2 4 16

Example: Heapsort(A)

4 11 10 8 7 9 [3 2 4 16

Example: Heapsort(A)

4 18 (10 17 9 [3 2 4 16

Example: Heapsort(A)

9 10

4 18 (10 4 7 9 [3 2 |1 16

Example: Heapsort(A)

4 18 (10 4 7 9 [3 2 |1 16

Example: Heapsort(A)

9 10

0 18 |9 4 7 |1 [3 2 |14 116

Example: Heapsort(A)

&

9 10

0 18 |9 4 7 |1 [3 2 |14 116

Example: Heapsort(A)

8 9 10

9 18 |3 4 7 |1 |2 10 |14 |16

Example: Heapsort(A)

8 9 10

9 18 |3 4 7 |1 |2 10 |14 |16

Example: Heapsort(A)

8 9 10

8 17 |3 4 7 |1]9 10 |14 |16

Example: Heapsort(A)

8 9 10

8 17 |3 4 7 |1]9 10 |14 |16

Example: Heapsort(A)

6 7

8 9 10

7 14 (3 12 |8 |9 10 |14 |16

Example: Heapsort(A)

8 9 10

7 14 (3 12 |8 |9 10 |14 |16

Example: Heapsort(A)

5 6 7
8 9 10

4 12 (3 1 7 |8 |9 10 |14 |16

Example: Heapsort(A)

6o o

4 12 (3 1 7 |8 |9 10 |14 |16

Example: Heapsort(A)

3 12 1 4 7 |8 |9 10 |14 |16

Example: Heapsort(A)
0 © 0 O
000

3 12 1 4 7 |8 |9 10 |14 |16

Example: Heapsort(A)

o/‘ o

2 11 (3 4 7 |8 |9 10 |14 |16

Example: Heapsort(A)

%@ o

2 11 (3 4 7 |8 |9 10 |14 |16

Example: Heapsort(A)

1
2 ‘ 3

112 (3 4 7 8 |9 10 |14 |16

Analyze: Heapsort(A)

Times
Build-Max-Heap(A) O(n)
for i =length[A] downto 2 n
do exchange A[1] and A[i] n-1
heap-size[A] = heap-size[A] -1 |n-1
Max-Heapify(A,1) n-1.0O(lg n)

T(n) =0O(nlgn)

Practice: Heapsort

8 |17 |12 |15 l92 ll6 11 (52 [4l

Priority Queues

A priority queue is a data structure for maintaining a set S
of elements, each with an associated value called a key.

There are two kinds of priority queues:

A max priority queue supports these operations:
— Insert(S,x) -> inserts the element x into the set S.
— Maximum(S) -> returns the element of S with the largest key.

— Extract-Max(S) -> removes and returns the element of S with
the largest key.

— Increase-Key(S,x,k) -> increases the value of element x’s key to
the new value k which is assumed to be as large as x’s current
key value.

A min priority queue supports these operations:
— Insert(S,x) , Minimum(S) , Extract-Min(S), Decrease-Key(S,x,k)

Max-Priority Queue

Pseudo-code: Heap-Maximum(A)
return A[1]

Running time = O(1)

Max-Priority Queue

Pseudo-code: Heap-Extract-Max(A)
if heap-size[A] < 1
then error “heap underflow”

max=A[1]

A[1] = A[heap-size[A]]
heap-size[A] = heap-size[A] — 1
Max-Heapify(A,1)

return max

Running time = O(lg n)

Max-Priority Queue

Pseudo-code: Heap-Increase-Key(A,l,Key)
if key < A[i]
then error “new key is smaller than current key”
Ali] = key
while i> 1 and A[parent(i)] < A[i]
do exchange A[i] and A[parent(i)]
i = parent(i)

Running time = O(lg n)

Max-Priority Queue

Pseudo-code: Max-Heap-Insert(A,key)
heap-size(A) = heap-size[A]+1
A[heap-size[A]] = — 0
Heap-Increase-Key(A, heap-size[A], key)

Running time = O(lg n)

Example: Max-Priority Queue:
Heap-Increase-Key

Example: Max-Priority Queue:
Heap-Increase-Key

16

Example: Max-Priority Queue:
Heap-Increase-Key

16

Example: Max-Priority Queue:
Heap-Increase-Key

