Ch12: Quick Sort

305233, 305234 Algorithm Analysis and Design Jiraporn Pooksook Naresuan University

Quick sort

- Worst-case running time is $\Theta(n^2)$ on an input array of n numbers.
- Expected running time is $\Theta(n \lg n)$
- Based on the divide and conquer paradigm.

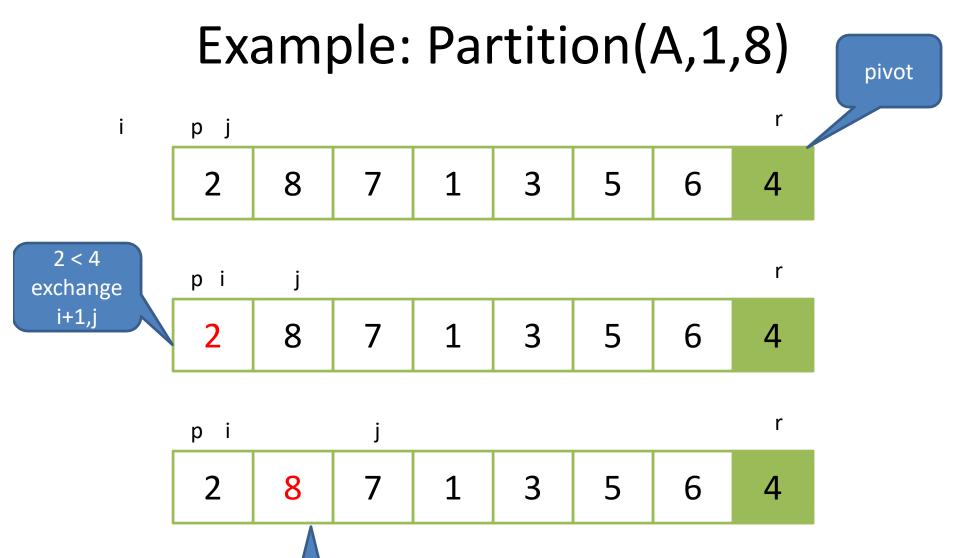
Quicksort(A, p,r)

if p < r
 then q = Partition(A,p,r)
 Quicksort(A,p, q-1)
 Quicksort(A, q+1, r)</pre>

Partition(A,p,r)

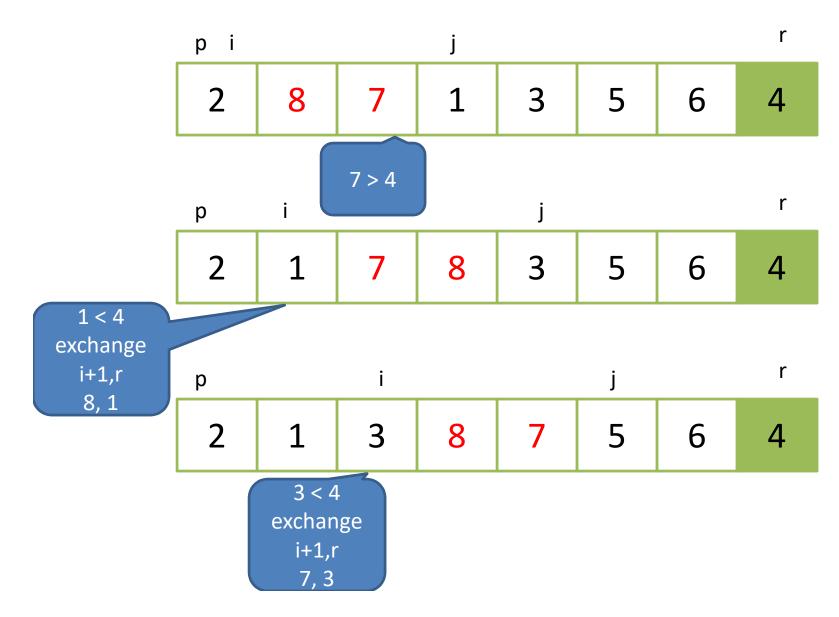
- To partition data is to divide it into two groups
- One group contains items with a key value higher than the reference value.
- The other group contains items with a key value lower than the reference value.
- A reference value is also called a pivot value

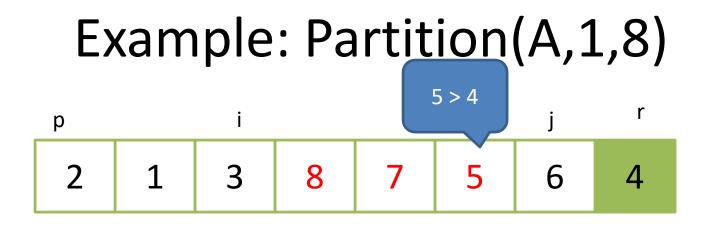
Partition(A, p,r)

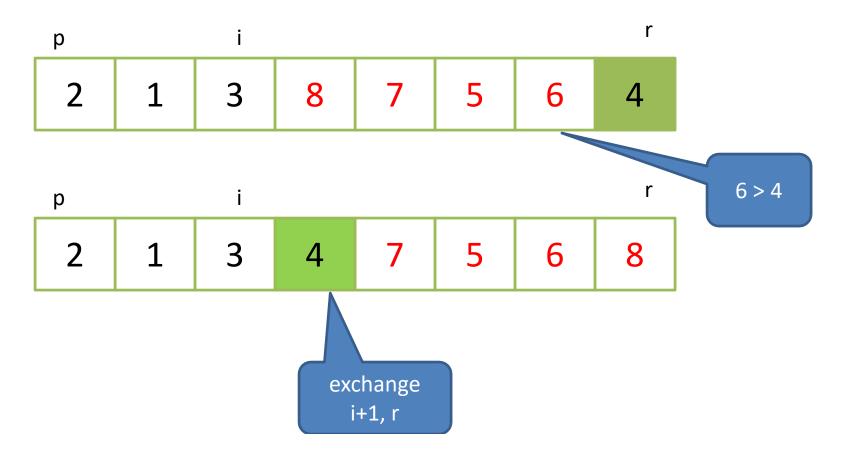


8 > 4

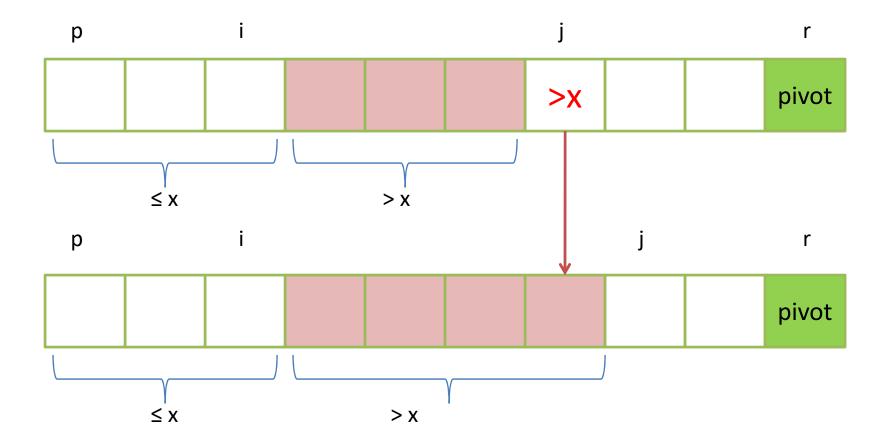
Example: Partition(A,1,8)



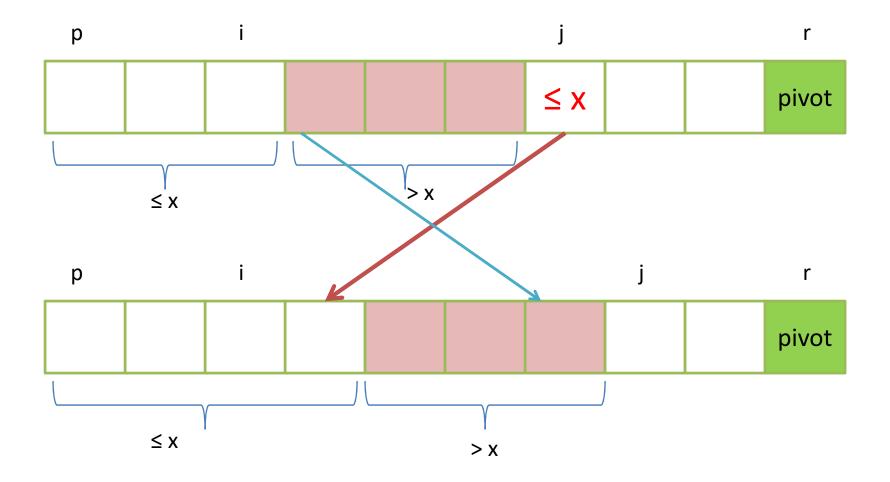




Analyzing Partition(A,p,r)



Analyzing Partition(A,p,r)



Loop invariants with Partition(A,p, r)

theoretically

loop invariant = before running each loop for any array index k, the following conditions hold: 1. $p \le k \le i$, then $A[k] \le x$ 2. If $i+1 \le k \le j-1$, then A[k] > x3. If k=r then A[k] = x

Initialization:

Before running loop 0, i = p-1 and j=p Condition 1 : there is no value between p and i, Condition 2: there is no value between i+1 and j-1 Condition 3: line 1 x = A[k] Hence all 3 conditions hold. (True!!)

Maintenance:

When A[j]<=x, i increases and A[i], A[j] are swapped. Then j increases. Condition 1 satisfies. When A[j] >= x, j increases. Then condition 2 satisfies. Condition 3 satisfies from the 1st line. Hence all 3 conditions hold. (True!!)

Termination:

At termination j = r, the array has partitioned into 3 sets following above conditions. (True!!)

The running time of Quicksort

- Worst-case partitioning
 - Partition with n-1 elements and 0 elements.

 $T(n) = T(n-1) + \Theta(n)$

– The running time is $\Theta(n^2)$

- Best-case partitioning
 - Partition with the floor of n/2 elements

 $T(n) \le 2T(n/2) + \Theta(n)$

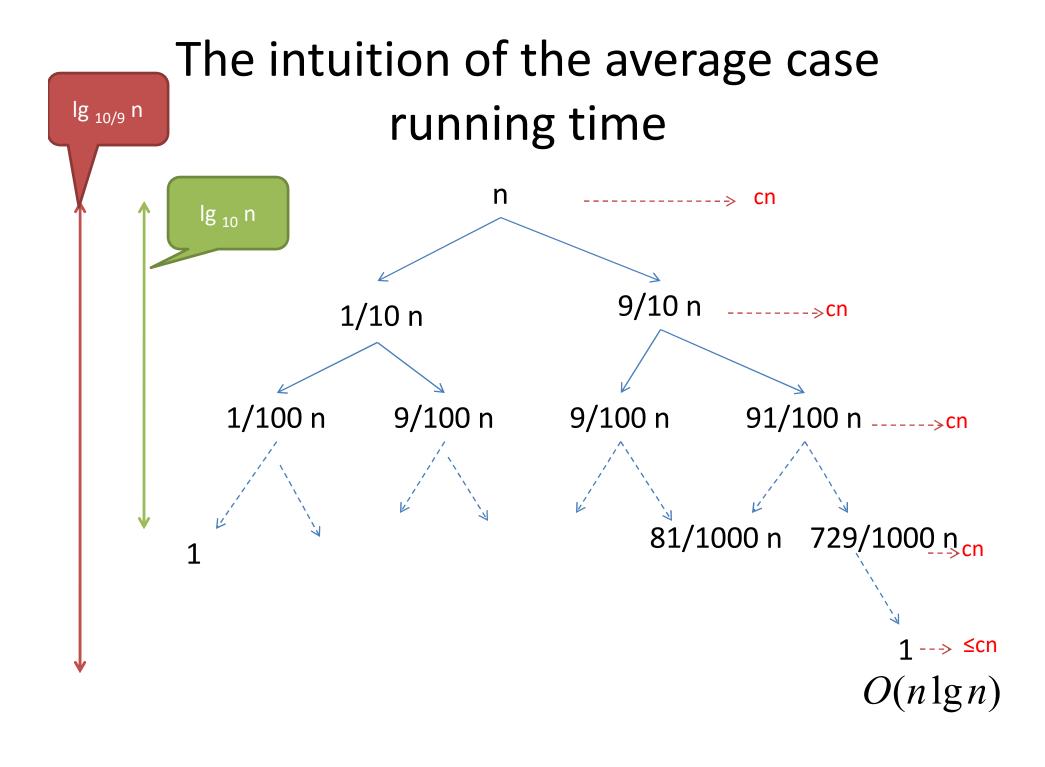
- The running time is $\Theta(n \lg n)$

The running time of Quicksort

- Balanced partitioning
- Average running time is closer to the best-case running time.
- For example, partition 9-to-1 proportional split.

 $T(n) \le T(9n/10) + T(n/10) + cn$

• The running time is $\Theta(n \lg n)$



Randomized version of Quicksort

Randomized-Partition(A,p,r)

i = Random(p,r)
exchange A[r] and A[i]
return Partition(A,p,r)

Randomized-Quicksort(A,p,r)

if p < r

then q = Randomized-Partition(A,p,r) Randomized-Quicksort(A,p, q-1) Randomized-Quicksort(A, q+1, r)

Wrapping-up Sorting algorithms

Algorithm	Time	Note
Insertion sort	O(n ²)	In-place memory Notoriously slow
Merge sort	O(n lg n)	Linear extra memory Fast(good for large input)
Heap sort	O(n lg n)	In-place memory Fast (worst case is O(n lg n)
Quick sort	O(n lg n)	In-place memory Fastest (optimal for large input but worst case can be O(n ²))

Practice: Quicksort

16 14 51	2	15	19	17	13	
----------	---	----	----	----	----	--