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Comparison sorts

• The sorted order they determine is based only 
on comparisons between the input elements.

• Any comparison sort must make          

comparisons in the worst case to sort n 

)lg( nn

comparisons in the worst case to sort n 
elements. 



Counting Sort(A,B,k)

for  i=0 to k
do C[ i ] = 0

for  j=1 to length[A]
do C[A[ j ]] = C[A[ j ]]+1do C[A[ j ]] = C[A[ j ]]+1

for i = 1 to k
do C[i] = C[i] + C[i-1]

for j=length[A] downto 1
do B[C[A[ j ]]] = A[ j ]
C[A[ j ]] = C[A[ j ]] -1



Analyze Counting Sort

• Assume that each of the n input elements is an 
integer in the range 0 to k, for some integer k.

• Line 1-2, takes time 

• Line 3-4 takes time )(n

)(k

• Line 3-4 takes time 

• Line 5-6 takes time

• Line  7-9 takes time 

• Overall, the sort runs in                   time.

• When we have k = O(n) then the running time is 

)(n

)(k

)(n

)( nk 

)(n



Example: Counting sort
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Counting sort

• Counting sort is stable.

– numbers with the same value appear in the 
output array in th same order as they do in the 
input arrayinput array



Radix Sort

• An algorithm used by the card-sorting 
machines.

• The digit sorts in this algorithm stable.

• Typically a sequential random-access machine • Typically a sequential random-access machine 
sometimes uses radix sort to records of 
information that are keyed by multiple fields 
such as sorting dates by three keys: year, 
month and day.



Radix Sort

for  i = 1 to d // d is the highest-order digit
do use a stable sort to sort array A on 
digit i



Example: Radix sort
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Analyze Radix Sort

• When each digit is in the range 0 to k-1 and k is 
not too large, counting sort is an obvious choice.

• Each pass over n d-digit numbers then takes time 

• There are d passes , then the total time of radix 
)( kn 

• There are d passes , then the total time of radix 
sort is 

• When d is a constant and k = O(n), radix sort runs 
in linear time.

• Given n b-bit number and any positive integer 
r ≤ b, radix sort sorts these numbers in               

))(( knd 

))2)(/(( rnrb 



Bucket Sort

• Assume that the input is generated by a random 
process that distributes elements uniformly over 
the interval [0,1).

• Divide the interval [0,1) into n equal-sized • Divide the interval [0,1) into n equal-sized 
subintervals, or buckets.

• Distribute the n input numbers into the buckets.

• Sort the numbers in each bucket and go through 
the buckets in order; listing the elements in each.



Bucket-Sort(A)

n = length[A]
for i = 1 to n

do insert A[i] into list B[              ]
for i = 0 to n-1

 ][inA
for i = 0 to n-1

do sort list B[i] with insertion sort
concatenate the lists B[0], B[1], ... , B[n-1] 
together in order.



Example: Bucket-sort
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Analyze Bucket-sort

• The running time depends on line 5. 

• Analyze the cost of calling insertion sort in line 
5 and the number of expected time we call 
insertion sort is 2 -1/ninsertion sort is 2 -1/n

• Hence the running time  of bucket sort is

)()/12(.)()( nnOnnnT 



Practice : Counting sort
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