Ch13: Sorting in Linear Time

305233, 305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Comparison sorts

- The sorted order they determine is based only on comparisons between the input elements.
- Any comparison sort must make $\Omega(n \lg n)$ comparisons in the worst case to sort n elements.

Counting Sort(A,B,k)

```
for i=0 to k
    do C[ i ] = 0
for j=1 to length[A]
    do C[A[j]] = C[A[j]]+1
for i=1 to k
    do C[i] = C[i] + C[i-1]
for j=length[A] downto 1
    do B[C[A[j]]] = A[j]
    C[A[j]]=C[A[j]]-1
```


Analyze Counting Sort

- Assume that each of the n input elements is an integer in the range 0 to k, for some integer k.
- Line 1-2, takes time $\Theta(k)$
- Line 3-4 takes time $\Theta(n)$
- Line 5-6 takes time $\Theta(k)$
- Line 7-9 takes time $\Theta(n)$
- Overall, the sort runs in $\Theta(k+n)$ time.
- When we have $\mathrm{k}=\mathrm{O}(\mathrm{n})$ then the running time is $\Theta(n)$

A Example: Counting sort

1	2
2	5
3	3
	0
	2
5 6	3
7	0
8	3

C	
0	2
1	2
	4
3	7
4	7
5	8

A Example: Counting sort

B

1	2
2	5
3	3
4	0
4	2
4	3
7	0
8	3

C	
0	2
1	2
	4
3	6
4	7
5	8

1	
2	0
3	
4	
5	
6	
7	3
8	

A Example: Counting sort

B

1	2
2	2
3	3
4	0
	2
5	3
6	3
7	0
8	3

	C
0	1
1	2
	4
3	6
4	7
5	8

2	0
3	
4	
5	
	3
6	
7	3
8	

A Example: Counting sort

B

1	2
2	5
3	3
	0
	2
5	
6	3
7	0
8	3

C	
0	1
1	2
	4
3	5
4	7
5	8

1	
2	0
3	
	2
5	
	3
7	3
8	

A
 Example: Counting sort

B

1	2
2	5
3	3
4	0
	2
5	3
6	3
7	0
8	3

1	0
	0
	0
4	2
6	3
7	3

A
 Example: Counting sort
 B

1	2
2	5
3	3
4	0
	2
	2
6	3
7	0
8	3

	C
	0
1	2
	3
3	5
	7
5	8

1	0
2	0
3	
	2
	3
5	3
6	
7	3
8	

A
 Example: Counting sort
 B

1	2
	2
3	5
	3
	0
	2
6	3
7	0
8	3

0	0
1	2
	3
3	4
4	7
5	8

1	0
2	0
3	
	2
	3
5	3
6	
7	3
8	5

Counting sort

- Counting sort is stable.
- numbers with the same value appear in the output array in th same order as they do in the input array

Radix Sort

- An algorithm used by the card-sorting machines.
- The digit sorts in this algorithm stable.
- Typically a sequential random-access machine sometimes uses radix sort to records of information that are keyed by multiple fields such as sorting dates by three keys: year, month and day.

Radix Sort

for $\mathrm{i}=1$ to $\mathrm{d} / / \mathrm{d}$ is the highest-order digit do use a stable sort to sort array A on digit i

Example: Radix sort

3	2	9				
4	5	7				
6	5	7				
8	3	9				
4	3	6				
7	2	0				
3	5	5	\quad	7	2	0
:---	:---	:---				
3	5	5				
4	3	6				
4	5	7				
6	5	7				
3	2	9				
8	3	9				

Example: Radix sort

7	2	0	7	2	0
3	5	5	3	2	9
4	3	6	4	3	6
4	5	7	8	3	9
6	5	7	3	5	5
3	2	9	4	5	7
8	3	9	6	5	7

Example: Radix sort

7	2	0	3	2	9
3	2	9	3	5	5
4	3	6	4	3	6
8	3	9	4	5	7
3	5	5	6	5	7
4	5	7	7	2	0
6	5	7	8	3	9

Analyze Radix Sort

- When each digit is in the range 0 to $\mathrm{k}-1$ and k is not too large, counting sort is an obvious choice.
- Each pass over n d-digit numbers then takes time

$$
\Theta(n+k)
$$

- There are d passes, then the total time of radix sort is $\Theta(d(n+k))$
- When d is a constant and $\mathrm{k}=\mathrm{O}(\mathrm{n})$, radix sort runs in linear time.
- Given n b-bit number and any positive integer $r \leq b$, radix sort sorts these numbers in

$$
\Theta\left((b / r)\left(n+2^{r}\right)\right)
$$

Bucket Sort

- Assume that the input is generated by a random process that distributes elements uniformly over the interval $[0,1)$.
- Divide the interval $[0,1)$ into n equal-sized subintervals, or buckets.
- Distribute the n input numbers into the buckets.
- Sort the numbers in each bucket and go through the buckets in order; listing the elements in each.

Bucket-Sort(A)

```
n = length[A]
for i=1 to n
    do insert A[i] into list }\textrm{B}[\lfloornA[i]]
for i=0 to n-1
    do sort list B[i] with insertion sort
concatenate the lists B[0], B[1], ... , B[n-1]
together in order.
```


Analyze Bucket-sort

- The running time depends on line 5.
- Analyze the cost of calling insertion sort in line 5 and the number of expected time we call insertion sort is $2-1 / n$
- Hence the running time of bucket sort is

$$
T(n)=\Theta(n)+n \cdot O(2-1 / n)=\Theta(n)
$$

Practice : Counting sort

2
5
0
1
1
3
4
1
2

