
Ch13: Sorting in Linear Time

305233, 305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Comparison sorts

• The sorted order they determine is based only
on comparisons between the input elements.

• Any comparison sort must make

comparisons in the worst case to sort n

)lg(nn

comparisons in the worst case to sort n
elements.

Counting Sort(A,B,k)

for i=0 to k
do C[i] = 0

for j=1 to length[A]
do C[A[j]] = C[A[j]]+1do C[A[j]] = C[A[j]]+1

for i = 1 to k
do C[i] = C[i] + C[i-1]

for j=length[A] downto 1
do B[C[A[j]]] = A[j]
C[A[j]] = C[A[j]] -1

Analyze Counting Sort

• Assume that each of the n input elements is an
integer in the range 0 to k, for some integer k.

• Line 1-2, takes time

• Line 3-4 takes time)(n

)(k

• Line 3-4 takes time

• Line 5-6 takes time

• Line 7-9 takes time

• Overall, the sort runs in time.

• When we have k = O(n) then the running time is

)(n

)(k

)(n

)(nk 

)(n

Example: Counting sort

5

3

0

2

A

1

2

3
0

2

C

0

1 2

2

C

0

1

จํานวนเลข สําหรับ
แต่ละ index มี

กี�ตวั

จํานวนเลข ที�น้อย
กว่าหรือเท่ากบั
สําหรับแต่ละ

index มีกี�ตวั

2

0

3

0

3

4

5

6

7

8

0

2

0

3

1

2

3

4

5 1

2

4

7

7

1

2

3

4

5 8

Example: Counting sort

5

3

0

2

A

1

2

3

2

2

C

0

1

B

1

2

3

2

0

3

0

3

4

5

6

7

8

2

4

7

7

1

2

3

4

5 8
3

4

5

6

7

8

Example: Counting sort

5

3

0

2

A

1

2

3

2

2

C

0

1

0

B

1

2

3

2

0

3

0

3

4

5

6

7

8

2

4

7

6

1

2

3

4

5 8
3

4

5

6

7

8

Example: Counting sort

5

3

0

2

A

1

2

3

2

1

C

0

1

0

B

1

2

3

2

0

3

0

3

4

5

6

7

8

2

4

7

6

1

2

3

4

5 8

3

3

4

5

6

7

8

Example: Counting sort

5

3

0

2

A

1

2

3

2

1

C

0

1

0

2

B

1

2

3

2

0

3

0

3

4

5

6

7

8

2

4

7

5

1

2

3

4

5 8

2

3

3

4

5

6

7

8

Example: Counting sort

5

3

0

2

A

1

2

3

2

1

C

0

1

0

2

0

B

1

2

3

2

0

3

0

3

4

5

6

7

8

2

3

7

5

1

2

3

4

5 8

2

3

3

4

5

6

7

8

Example: Counting sort

5

3

0

2

A

1

2

3

2

0

C

0

1

0

2

0

B

1

2

3

2

0

3

0

3

4

5

6

7

8

2

3

7

5

1

2

3

4

5 8

3

2

3

3

4

5

6

7

8

Example: Counting sort

5

3

0

2

A

1

2

3

2

0

C

0

1

0

2

0

B

1

2

3

2

0

3

0

3

4

5

6

7

8

2

3

7

4

1

2

3

4

5 8

3

2

3

3

5

4

5

6

7

8

Example: Counting sort

5

3

0

2

A

1

2

3

2

0

C

0

1

0

2

2

0

B

1

2

3

2

0

3

0

3

4

5

6

7

8

2

3

7

4

1

2

3

4

5 7

3

2

3

3

5

4

5

6

7

8

Counting sort

• Counting sort is stable.

– numbers with the same value appear in the
output array in th same order as they do in the
input arrayinput array

Radix Sort

• An algorithm used by the card-sorting
machines.

• The digit sorts in this algorithm stable.

• Typically a sequential random-access machine • Typically a sequential random-access machine
sometimes uses radix sort to records of
information that are keyed by multiple fields
such as sorting dates by three keys: year,
month and day.

Radix Sort

for i = 1 to d // d is the highest-order digit
do use a stable sort to sort array A on
digit i

Example: Radix sort

4

6

3

5

5

2

7

7

9

3

4

7

5

3

2

5

6

0

6

4

8

7

3

5

3

3

2

5

7

6

9

0

5

4

6

4

3

8

3

5

5

2

3

6

7

7

9

9

Example: Radix sort

3

4

7

2

3

2

9

6

0

3

4

7

5

3

2

5

6

0

4

3

8

4

6

3

5

3

5

5

6

5

9

7

7

4

6

4

3

8

3

5

5

2

3

6

7

7

9

9

Example: Radix sort

3

4

7

2

3

2

9

6

0

3

4

3

5

3

2

5

6

9

4

3

8

4

6

3

5

3

5

5

6

5

9

7

7

4

6

4

7

8

3

5

5

2

3

6

7

7

0

9

Analyze Radix Sort

• When each digit is in the range 0 to k-1 and k is
not too large, counting sort is an obvious choice.

• Each pass over n d-digit numbers then takes time

• There are d passes , then the total time of radix
)(kn 

• There are d passes , then the total time of radix
sort is

• When d is a constant and k = O(n), radix sort runs
in linear time.

• Given n b-bit number and any positive integer
r ≤ b, radix sort sorts these numbers in

))((knd 

))2)(/((rnrb 

Bucket Sort

• Assume that the input is generated by a random
process that distributes elements uniformly over
the interval [0,1).

• Divide the interval [0,1) into n equal-sized • Divide the interval [0,1) into n equal-sized
subintervals, or buckets.

• Distribute the n input numbers into the buckets.

• Sort the numbers in each bucket and go through
the buckets in order; listing the elements in each.

Bucket-Sort(A)

n = length[A]
for i = 1 to n

do insert A[i] into list B[]
for i = 0 to n-1

 ][inA
for i = 0 to n-1

do sort list B[i] with insertion sort
concatenate the lists B[0], B[1], ... , B[n-1]
together in order.

Example: Bucket-sort
.78

.17

.39

.26

.72

A
1

2

3

4

0

1

2

3

B

.12 .17

.21 .23 .26

.39

.72

.94

.21

.12

.23

.68

5

6

7

8

9

10

4

5

6

7

8

9

.68

.72 .78

.94

Analyze Bucket-sort

• The running time depends on line 5.

• Analyze the cost of calling insertion sort in line
5 and the number of expected time we call
insertion sort is 2 -1/ninsertion sort is 2 -1/n

• Hence the running time of bucket sort is

)()/12(.)()(nnOnnnT 

Practice : Counting sort
2

5

0

1

11

3

4

1

4

2

