Ch13: Sorting in Linear Time

305233, 305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Comparison sorts

* The sorted order they determine is based only
on comparisons between the input elements.

* Any comparison sort must make Q(nlgn)

comparisons in the worst case to sort n
elements.

Counting Sort(A,B,k)

for i=0 to k
doC[i]=0
for j=1 to length[A]

do C
fori=1to
do C

ALj11=C[A[]]]+1
K

i] = Cl[i] + C[i-1]

for j=length[A] downto 1
do B[C[A[j]]] =Al]]
CIA[jI]=C[A[]j]]-1

Analyze Counting Sort

Assume that each of the n input elements is an
integer in the range 0 to k, for some integer k.

ine 1-2, takes time O(k)
Line 3-4 takes time ®(n)
Line 5-6 takes time O(k)
ine 7-9 takes time ®O(n)
Overall, the sort runsin ®(k +n) time.

When we have k = O(n) then the running time is ©(n)

A Example: Counting sort

2 RVUIULAT AN
usiay index i

o
neE

Sl Piies
n9NUFRWNIL
ANTLLBIAY
index il

A

Example: Counting sort

1

C
2
0| 2
3
12
4 A
2
3 | 7 >
4|l 7 6
7
c | 8

B

A

Example: Counting sort

C
ol 2
12

w
(00 ~N (@) &

1

B

A

Example: Counting sort

C
o] 1
12

w
(00) ~N (@) sl

1

B

A

Example: Counting sort

1

C
2
o 1
3
12
4 4
2
3| 9 >
4|l 7 6
7
c| 8

B

A

Example: Counting sort

1

C
2
o 1
3
12
3 4
2
3| 9 >
4|l 7 6
7
| 3

B

A

Example: Counting sort

C
0| 0
|2

3

IN
o0 ~N ol

1

B

A

Example: Counting sort

C
2
o 0
3
12
3 4
2
;| 4 >
al|l 7 6
7
| 8

1

B

A

Example: Counting sort

C
o] 0
L2

3
2
;| 4
4| 7
s | 7/

1

B

Counting sort

* Counting sort is stable.

— numbers with the same value appear in the
output array in th same order as they do in the
Input array

Radix Sort

* An algorithm used by the card-sorting
machines.

* The digit sorts in this algorithm stable.

* Typically a sequential random-access machine
sometimes uses radix sort to records of
information that are keyed by multiple fields
such as sorting dates by three keys: year,
month and day.

Radix Sort

for i=1tod//disthe highest-order digit
do use a stable sort to sort array A on
digit i

Example: Radix sort

3 9
4 7
6 7
3 9
4 6
7 0
3 5

=)

o b~ b

W

Example:

Radix sort

=)

N oo o) O O

Example: Radix sort

Analyze Radix Sort

When each digit is in the range 0 to k-1 and k is
not too large, counting sort is an obvious choice.

Each pass over n d-digit numbers then takes time
O(n+k)

There are d passes, then the total time of radix

sort is O(d(n+k))

When d is a constant and k = O(n), radix sort runs
in linear time.

Given n b-bit number and any positive integer
r < b, radix sort sorts these numbers in

OWb/r)(n+2"))

Bucket Sort

Assume that the input is generated by a random
process that distributes elements uniformly over
the interval [0,1).

Divide the interval [0,1) into n equal-sized
subintervals, or buckets.

Distribute the n input numbers into the buckets.

Sort the numbers in each bucket and go through
the buckets in order; listing the elements in each.

Bucket-Sort(A)

n = length[A]
fori=1ton

do insert A[i] into list B[_nA[i]J]
fori=0ton-1

do sort list B[i] with insertion sort
concatenate the lists B[O], B[1], ..., B[n-1]
together in order.

10

A

.78

17

.39

.26

72

.94

21

12

.23

.68

Example: Bucket-sort

0

1

B
12 17
21 .23 .26
.39
.68
72 .78
.94

Analyze Bucket-sort

* The running time depends on line 5.

* Analyze the cost of calling insertion sort in line
5 and the number of expected time we call
insertion sortis 2 -1/n

* Hence the running time of bucket sort is

I'(n)=0n)+n02-1/n)=0(n)

Practice : Counting sort

