
Ch14: Binary Search Tree

305233, 305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Binary Search Tree

• A binary search tree is organized in a binary tree where
each node contains fields left, right, and p that point to
the nodes corresponding to its left child, right child and
parent, respectively.

• The binary search tree property:
– Let x be a node in a binary search tree. If y is a node in the – Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key[y] ≤ key[x]. If y is a node in the
right subtree of x, then key[x] ≤ key[y].

• Take time proportional to the height of the tree.
• Expected height of a randomly built binary search tree

is O(lg n), so that basic dynamic-set operations on such
a tree take time on average.)(lgn

Binary Search Tree

15

6 18

3 7 20

Height = lg n

17

2 4 13

9

Inorder-Tree-Walk(x)

if x != NIL
then Inorder-Tree-Walk(left[x])
print key[x]
Inorder-Tree-Walk(right[x])Inorder-Tree-Walk(right[x])

It takes time)(n

Tree-Search(x,k)

if x = NIL or k = key[x]
then return x

if k < key[x]
then return Tree-Search(left[x],k)then return Tree-Search(left[x],k)
else return Tree-Search(right[x],k)

Recursion from a path downward from the root of
the tree , so the running time is)(h

Iterative-Tree-Search(x,k)

while x != NIL and k != key[x]
do if k < key[x]

then x = left[x]
else x = right[x]else x = right[x]

return x

Tree-Minimum(x)

while left[x] != NIL
do x = left[x]

return x

Tree-Maximum(x)

while right[x] != NIL
do x = right[x]

return x

Tree-Successor(x)

if right[x] != NIL
then return Tree-Minimum(right[x])

Y=p[x]
while y!=NIL and x = right[y]while y!=NIL and x = right[y]

do x=y
y=p[y]

return y

We either follow a path up the tree or follow a path
down the tree, so the running time is)(h

Tree-Successor

15

6 18

Successor of 15 is 17

3 7 2017

2 4 13

9

Successor of 13 is 15

Tree-Insert(T,z)
y = NIL
x = root[T]
while x != NIL

do y = x
if key[z] < key[x]
then x = left[x]then x = left[x]
else x = right[x]

p[z] = y
if y = NIL

then root[T] = z
else if key[z] < key[y]

then left[y] = z
else right[y] = z

Example: Tree-Insert(T,13)

12

5 18

2 9 1915

13 17

Recursion from a path downward from the root of
the tree , so the running time is)(h

Tree-Delete (T,z)
if left[z] = NIL or right[z] = NIL

then y = z
else y = Tree-Successor(z)

if left[y] != NIL
then x=left[y]
else x = right[y]

If x != NILIf x != NIL
then p[x] = p[y]

If p[y] = NIL
then root[T] = x
else if y = left[p[y]]

then left[p[y]] = x
else right[p[y]] = x

if y != z
then key[z] = key[y]
copy y’s satellite data into z

return y

Example: Tree-Delete(T,13)

15

5 16

3 12 20

10 13

6

7

18 23

Example: Tree-Delete(T,13)

15

5 16

3 12 20

10

6

7

18 23

Example: Tree-Delete(T,16)

15

5 16

3 12 20

10 13

6

7

18 23

Example: Tree-Delete(T,16)

15

5
20

3 12

10 13

6

7

18
23

Example: Tree-Delete(T,5)

15

5 16

3 12 20

10 13

6

7

18 23

Example: Tree-Delete(T,5)

15

5 16

6

3 12 20

10 13

7

18 23

Example: Tree-Delete(T,5)

15

6 16

3 12 20

10 13

7

18 23

Recursion from a path downward from the root of
the tree , so the running time is)(h

