Ch16: Hash Tables

305233, 305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Dictionaries: Abstract Data Type

* Dictionaries (Abstract Data Type) is to maintain
set of items, each with a key
— INSERT(item)
— DELETE(item)

— SEARCH(key) -> return item with given key or report
does not exist

A has table is an effective data structure for
implementing dictionaries.

* Worst case time for searching is O(n) but its
expected time is O(1).

Dictionaries in Python

D={1234: ‘Bob’,
5678, ‘Alice’}
Search by D[key]

Insert by D[key] = value
— D[5678]='Robert’

Delete by D[key]
— del D[1234]

Direct-Address Tables

* Aset of keys is in a set of universe U =
{0,1,...,m-1} where m is not too large.

* Adirect-address table is an array denoted by
T[0..m-1] in which each position, or slot,
corresponds to a key in the universe U.

Direct-Address Table

0 / satellite
data
1
U /
(universe of keys) 2
3
3
Y
> 5
(actual keys)
6 /
> 8 7 /
8 8
9 /

Direct-Address Tables

DIRECT-ADDRESS-SEARCH(T, k)
return T[k]

DIRECT-ADDRESS-INSERT(T, x)
Tlkey[x]] = x

DIRECT-ADDRESS-DELETE (T, k)
T[key[x]] = NIL

Each operation takes only O(1) time.

Disadvantages of Direct-addressing

* Keys may not be non-negative integers.
* Direct-address tables require a large size of
memory.

— If the universe U is large, we have to store a table
T of size U.

Disadvantages of Direct-addressing

Keys may not be non-negative integers.

Solution: using prehash to map key to non-
negative integers.

— A string of bits represents an integer.

— In python using function hash(x) means prehash.

Direct-address tables require a large size of
memory.

Solution: using hashing

Hash Tables

 We use a hash function h to compute the slot
from the key k.

* Hence h maps the universe U of keys into the
slots of a hash table T[0..m-1]:

h:U->{0,1,....m-1}

 We say that an element with key k hashes to
slot h(k); we also say that h(k) is the hash
value of key k.

Hash Table

/ 0

u /
(universe of keys) h(k,)
h(k,)

/

K

(actual keys) k; y h(k,)

: /

/
h(ky)
/ m-1

Hash Table

U
(universe of keys)

K
(actual keys) k

1k4

Hash Table

/ 0
U /
(universe of keys) h(k,)
h(k,)
/

K
(actual keys) k

h(kz)= h(k5)

1k4 /

Collision resolution by Chaining

 We put all the elements that hash to the same
slot in a linked list.

Hash with Chaining

/
U /
(universe of keys) k, k,

K =

(actual keys) 1 /
k5

/

/
k6

/

Hash with Chaining

Worst-case = length

of the list

CHAINED-HASH-SEARCH(T, k)
search for an element with key k in list T[h(k)]

Worst-case = O(1)

CHAINED-HASH-INSERT(T, x)
insert x at the head of list T[h(key[x])]

Worst-case = O(1) if
CHAINED-HASH-DELETE (T, k)

delete x from the list T[h(key[x])]

Analyze Hash with Chaining

* Simple uniform hashing is an assumption that
any given element is equally likely to hash into
any of the m slots independently of where any
other element has hashed to.

* Forj=0,1, ..., m-1. Let us denote the length
of the list T[j] by n;, so that

n=ny+n;+..+n_,

* The average value of n;is E[n] =a =n/m

Analyze Hash with Chaining

 We assume that the hash value h(k) can be
computed in O(1) time, so that the time
required to search for an element with key k
depends linearly on the length n,,, of the list

T[h(k)].
e \WWe consider two cases:
— The search is unsuccessful.

— The search successfully finds an element with key
k.

Analyze Hash with Chaining

 The expected time to search unsuccessfully
for a key k is the expected time to search to

the end of the list T[h(k)].
* The list T[h(k)] has expected length=E[n,] = a

* Hence the expected number of elements
examined in unsuccessful search is a, and the
total time required (including the time for
computing h(k)) = O(1+ a)

Analyze Hash with Chaining

The expected time to search successfully for an
element x is 1 more than the number of elements
that appear before x in x’s list.

Let x. denote the ith element inserted into the
table fori=1,2,...,n

Let k. = key[x]

For keys k; and k; we define the random variable
= 1{h(k,)= h(k)}

Under the S|mple uniform hashing assumption,
we have Pr{h(k)=h(k;)}=1/m, and so E[X;]= 1/m

Analyze Hash with Chaining

* Hence the expected number of elements
examined in a successful search is:

fiSas 3y,

J=i+l

—Z<1+ ZE[X

Jj=i+l

—Z(l+ >

Jj= =i+1M

=1+—Z(n—i)

nm i=i

—1+—(3n-3i)

nm i=i i=1
:1+L(n2 B n(n+1))
nm 2

Total time required

for a successful
search is O(1+a)

Analyze Hash with Chaining

* |f the number of hash-table slots is at |least
proportional to the number of elements in the
table, we have n = O(m) and, consequently
a=n/m = O(m)/m = O(1).

e Searching takes constant time on average.

e All dictionary operations can be supported in
O(1) time on average.

Hash Functions

* A good hash function satisfies (approximately)
the assumption of simple uniform hashing:

Each key is equally likely to hash to any of
the m slots, independently of where any
other key has hashed to.

* |tis typically not possible to check this
condition.

The Division Method

h(k) =k mod m

* For example, if hash table has size m =12 and
key k =100 then h(k) =4

* We usually avoid certain values of m. For
example m should not be a power of 2.

* A prime is often a good choice for m.

The Multiplication Method

h(k) = [m(k A mod 1)]

h(k) = [(k.A) mod 2% |>>(w-p)

e Aisintherange0<A<1,
suggest that A = (5%/2-1)/2 = 0.6180339887...

e m=2P
 k has w bits.

The Multiplication Method

w bits

(\

2w bits

Example: The Multiplication Method

k=123456,p =14, m=214=16384, w = 32

Hence choose A to be the fraction of the form
s/ 232 that is closest to (512 -1)/2.

A = 2654435769
k.s = 327706022297664
= (76300. 232) + 17612864

dn dm

14 most significant bits of rO

yield the value h(k) = 67

Universal Hashing

h(k) = [(ak+b)mod p] mod m

 a, barerandomed and be in {0,1,..,p-1}

e pisaprime which is greater than the size of
universe.

* The worst case key k; !=k; P

Collision resolution by
Open Addressing

Each table entry contains either an element of
the dynamic set or NIL.

— No chaining and only 1 item per slot

When searching for an element, we examine

table slots until the desired element is found or it
is clear that the element is not in the table.

In open addressing the hash table can fill up so
that no further insertions can be made.

The load factor o can never exceed 1.

Open Addressing

* To perform insertion using open addressing,
we successively examine, or probe, the hash
table until we find an empty slot in which to
put the key.

* |nstead of being fixed in the order 0,1,...,m-1
the sequence of positions probed depends
upon the key being inserted.

Open Addressing

e The hash function becomes:

h: Ux{0,1,..,m-1} -> {0,1,...,m-1}

* For every key k, the probe sequence
<h(k,0), h(k,1), ... ,h(k, m-1)>

be a permutation of <0,1,...,m-1>

Open Addressing

HASH-INSERT (T, k)
i=0
repeat j = h(k,i)
if T[j]=NIL
thenT[j] =Kk
return |
elsei=i+l
untili=m
error “hash table overflow”

Open Addressing

HASH-SEARCH (T, k)
i=0
repeat j = h(k,i)
ifT[j]=k
then return j
| = 1+1
until T[j]=NIL or i =m
return NIL

Example: Open Addressing

insert(586), h(586,1) =1

insert(481),
insert(496) ,
insert(496) ,
insert(496) ,

h(481,1) = 6
"(496,1) =4
n(496,2) =1

h(496,3) =3

N o o AW N -, O

Fail probe

586

133

496

204

481

Linear Probing

Given an ordinary hash function
h: U ->{0,1,...,m-1}

the method of linear probing use the hash
function :

h(k,i) = (h’(k) +i) mod m

Fori=0,1,..m-1

Long runs of occupied slots build up,
increasing the average search time!!

Quadratic Probing

* Given an ordinary hash function
h: U ->{0,1,...,m-1}

 the method of quadratic probing use the hash
function :

h(k,i) = (h’(k) + c,i +c,i*) mod m

* Fori=0,1,..,m-1and c, and c, are not equal
to 0.

Double Probing

Given an ordinary hash function
h: U ->{0,1,...,m-1}

the method of double probing use the hash
function :

h(k,i) = (h,(k) +i h,(k)) mod m

Fori=0,1,..,m-1 and h,(k) and h,(k) are auxiliary
hash functions.

The value h,(k) must be relatively prime to the
hash-table size m.

Analyze Open Addressing

 We have at most one element per slot, thus
n <m, which implies a < 1.
 We assume the uniform hashing is used.
 The probe sequence <h(k,0), h(k,1), ... ,h(k, m-
1)> used to insert or search for each key k is

equally likely to be any permutation of
(0,1,...,m-1).

Analyze Open Addressing

* The expected number of probes in an
unsuccessful search is at most 1/(1- a)

* Thus inserting an element into an opening
address hash table with load factor a requires
at most 1/(1- a) probes on average, assuming
uniform hashing.

* The expected number of probes in a sucessful
search is at most lln 1

a |-«

