Ch16: Hash Tables

305233, 305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Dictionaries: Abstract Data Type

- Dictionaries (Abstract Data Type) is to maintain set of items, each with a key
- INSERT(item)
- DELETE(item)
- SEARCH(key) -> return item with given key or report does not exist
- A has table is an effective data structure for implementing dictionaries.
- Worst case time for searching is O(n) but its expected time is $\mathrm{O}(1)$.

Dictionaries in Python

- $D=\{1234:$ 'Bob', 5678, 'Alice'\}
- Search by D[key]
- Insert by D[key] = value
- D[5678]=‘Robert'
- Delete by D[key]
- del D[1234]

Direct-Address Tables

- A set of keys is in a set of universe $U=$ $\{0,1, \ldots, m-1\}$ where m is not too large.
- A direct-address table is an array denoted by T[0..m-1] in which each position, or slot, corresponds to a key in the universe U.

Direct-Address Table

Direct-Address Tables

DIRECT-ADDRESS-SEARCH(T, k) return T[k]

DIRECT-ADDRESS-INSERT(T, x)
$T[k e y[x]]=x$

DIRECT-ADDRESS-DELETE (T, k)
$\mathrm{T}[\mathrm{key}[\mathrm{x}]]=\mathrm{NIL}$

Each operation takes only O(1) time.

Disadvantages of Direct-addressing

- Keys may not be non-negative integers.
- Direct-address tables require a large size of memory.
- If the universe U is large, we have to store a table T of size U.

Disadvantages of Direct-addressing

- Keys may not be non-negative integers.
- Solution: using prehash to map key to nonnegative integers.
- A string of bits represents an integer.
- In python using function hash(x) means prehash.
- Direct-address tables require a large size of memory.
- Solution: using hashing

Hash Tables

- We use a hash function h to compute the slot from the key k .
- Hence h maps the universe U of keys into the slots of a hash table T[0..m-1]:

$$
\text { h: U -> \{0,1,...,m-1\} }
$$

- We say that an element with key k hashes to slot $h(k)$; we also say that $h(k)$ is the hash value of key k.

Hash Table

Hash Table

Hash Table

Collision resolution by Chaining

- We put all the elements that hash to the same slot in a linked list.

Hash with Chaining

Hash with Chaining

Worst-case = length of the list
CHAINED-HASH-SEARCH(T, k)
search for an element with key k in list $T[h(k)]$

Worst-case = O(1)
CHAINED-HASH-INSERT(T, x) insert x at the head of list $T[h(\operatorname{key}[x])]$

Worst-case = O(1) if
lists are doubly linked.
CHAINED-HASH-DELETE (T, k) delete x from the list $\mathrm{T}[\mathrm{h}(\operatorname{key}[\mathrm{x}])$]

Analyze Hash with Chaining

- Simple uniform hashing is an assumption that any given element is equally likely to hash into any of the m slots independently of where any other element has hashed to.
- For $\mathrm{j}=0,1, \ldots, \mathrm{~m}-1$. Let us denote the length of the list $T[j]$ by n_{j}, so that

$$
\mathrm{n}=\mathrm{n}_{0}+\mathrm{n}_{1}+\ldots+\mathrm{n}_{\mathrm{m}-1}
$$

- The average value of n_{j} is $E\left[n_{j}\right]=\alpha=n / m$

Analyze Hash with Chaining

- We assume that the hash value $h(k)$ can be computed in O(1) time, so that the time required to search for an element with key k depends linearly on the length $n_{h(k)}$ of the list T[h(k)].
- We consider two cases:
- The search is unsuccessful.
- The search successfully finds an element with key k.

Analyze Hash with Chaining

- The expected time to search unsuccessfully for a key k is the expected time to search to the end of the list $T[h(k)]$.
- The list $T[h(k)]$ has expected length $=E\left[n_{h(k)}\right]=\alpha$
- Hence the expected number of elements examined in unsuccessful search is α, and the total time required (including the time for computing $\mathrm{h}(\mathrm{k}))=\mathrm{O}(1+\alpha)$

Analyze Hash with Chaining

- The expected time to search successfully for an element x is 1 more than the number of elements that appear before x in x 's list.
- Let x_{i} denote the ith element inserted into the table for $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Let $\mathrm{k}_{\mathrm{i}}=\operatorname{key}\left[\mathrm{x}_{\mathrm{i}}\right]$
- For keys k_{i} and k_{i} we define the random variable $\mathrm{X}_{\mathrm{ij}}=\mathrm{l}\left\{\mathrm{h}\left(\mathrm{k}_{\mathrm{i}}\right)=\mathrm{h}\left(\mathrm{k}_{\mathrm{j}}\right)\right\}$
- Under the simple uniform hashing assumption, we have $\operatorname{Pr}\left\{\mathrm{h}\left(\mathrm{k}_{\mathrm{i}}\right)=\mathrm{h}\left(\mathrm{k}_{\mathrm{j}}\right)\right\}=1 / \mathrm{m}$, and so $\mathrm{E}\left[\mathrm{X}_{\mathrm{ij}}\right]=1 / \mathrm{m}$

Analyze Hash with Chaining

- Hence the expected number of elements examined in a successful search is:

$$
\begin{array}{ll}
E\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right] & =1+\frac{1}{n m}\left(\sum_{i=1}^{n} n-\sum_{i=1}^{n} i\right) \\
=\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} E\left[X_{i j}\right]\right) & =1+\frac{1}{n m}\left(n^{2}-\frac{n(n+1)}{2}\right) \\
=\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right) & =1+\frac{n-1}{2 m} \\
=1+\frac{1}{n m} \sum_{i=1}^{n}(n-i) & =1+\frac{\alpha}{2}-\frac{\alpha}{2 n} \quad \begin{array}{l}
\text { Total time required } \\
\text { for a successful } \\
\text { search is } O(1+\alpha)
\end{array}
\end{array}
$$

Analyze Hash with Chaining

- If the number of hash-table slots is at least proportional to the number of elements in the table, we have $\mathrm{n}=\mathrm{O}(\mathrm{m})$ and, consequently $\alpha=n / m=O(m) / m=O(1)$.
- Searching takes constant time on average.
- All dictionary operations can be supported in O(1) time on average.

Hash Functions

- A good hash function satisfies (approximately) the assumption of simple uniform hashing:

Each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to.

- It is typically not possible to check this condition.

The Division Method

$h(k)=k \bmod m$

- For example, if hash table has size $m=12$ and key $\mathrm{k}=100$ then $\mathrm{h}(\mathrm{k})=4$
- We usually avoid certain values of m. For example m should not be a power of 2 .
- A prime is often a good choice for m.

The Multiplication Method

$h(k)=[m(k A \bmod 1)]$

$h(k)=\left[(k . A) \bmod 2^{w}\right] \gg(w-p)$

- A is in the range $0<A<1$, suggest that $A=\left(5^{1 / 2}-1\right) / 2=0.6180339887$...
- $m=2^{p}$
- k has w bits.

The Multiplication Method

 w bits

$$
s=A \cdot 2^{w}
$$

Example: The Multiplication Method

- $\mathrm{k}=123456, \mathrm{p}=14, \mathrm{~m}=2^{14}=16384, \mathrm{w}=32$
- Hence choose A to be the fraction of the form s/ 2^{32} that is closest to $\left(5^{1 / 2}-1\right) / 2$.
- $A=2654435769$
- k.s = 327706022297664

$$
=\left(76300.2^{32}\right)+17612864 \quad \begin{gathered}
14 \text { most significant bits of r0 } \\
\text { yield the value } h(k)=67
\end{gathered}
$$

Universal Hashing

$h(k)=[(a k+b) \bmod p] \bmod m$

- a, b are randomed and be in $\{0,1, . ., p-1\}$
- p is a prime which is greater than the size of universe.
- The worst case key $\mathrm{k}_{\mathrm{i}}!=\mathrm{k}_{\mathrm{j}}$:

$$
\operatorname{Pr}\left\{\mathrm{h}\left(\mathrm{k}_{\mathrm{i}}\right)=\mathrm{h}\left(\mathrm{k}_{\mathrm{j}}\right)\right\}=1 / \mathrm{m}
$$

Ideal situation of collision

Collision resolution by Open Addressing

- Each table entry contains either an element of the dynamic set or NIL.
- No chaining and only 1 item per slot
- When searching for an element, we examine table slots until the desired element is found or it is clear that the element is not in the table.
- In open addressing the hash table can fill up so that no further insertions can be made.
- The load factor α can never exceed 1 .

Open Addressing

- To perform insertion using open addressing, we successively examine, or probe, the hash table until we find an empty slot in which to put the key.
- Instead of being fixed in the order $0,1, \ldots, m-1$ the sequence of positions probed depends upon the key being inserted.

Open Addressing

- The hash function becomes:

$$
h: U x\{0,1, \ldots, m-1\}->\{0,1, \ldots, m-1\}
$$

- For every key k, the probe sequence <h(k,0) , h(k,1), ... ,h(k, m-1)>
be a permutation of $\langle 0,1, \ldots, m-1>$

Open Addressing

```
HASH-INSERT (T, k)
i=0
repeat j=h(k,i)
    if T[j] = NIL
        then T [j] = k
                                    return j
    else i= i+1
until i=m
error "hash table overflow"
```


Open Addressing

```
HASH-SEARCH (T, k)
i=0
repeat j=h(k,i)
    if T[j] = k
    then return j
    i = i+1
until T[j]=NIL or i=m
return NIL
```


Example: Open Addressing

- insert(586) , h(586,1) = 1
-
- insert(481) , h(481,1)=6
- insert(496) , $h(496,1)=4$
- insert(496) , h(496,2)=1
- insert(496) , h(496,3) =3

1	586
2	133
3	496
4	204
5	
6	481
7	

Linear Probing

- Given an ordinary hash function

$$
h^{\prime}: U \quad->\{0,1, \ldots, m-1\}
$$

- the method of linear probing use the hash function :

$$
h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m
$$

- For $\mathrm{i}=0,1, \ldots, \mathrm{~m}-1$
- Long runs of occupied slots build up, increasing the average search time!!

Quadratic Probing

- Given an ordinary hash function

$$
h^{\prime}: U \quad->\{0,1, \ldots, m-1\}
$$

- the method of quadratic probing use the hash function :

$$
h(k, i)=\left(h^{\prime}(k)+c_{1} i+c_{2} i^{2}\right) \bmod m
$$

- For $\mathrm{i}=0,1, \ldots, \mathrm{~m}-1$ and c_{1} and c_{2} are not equal to 0 .

Double Probing

- Given an ordinary hash function

$$
h^{\prime}: U \quad->\{0,1, \ldots, m-1\}
$$

- the method of double probing use the hash function :

$$
h(k, i)=\left(h_{1}(k)+i h_{2}(k)\right) \bmod m
$$

- For $\mathrm{i}=0,1, \ldots, m-1$ and $h_{1}(k)$ and $h_{2}(k)$ are auxiliary hash functions.
- The value $h_{2}(k)$ must be relatively prime to the hash-table size m .

Analyze Open Addressing

- We have at most one element per slot, thus $n \leq m$, which implies $\alpha \leq 1$.
- We assume the uniform hashing is used.
- The probe sequence <h(k,0) , h(k,1), ... ,h(k, m1) $>$ used to insert or search for each key k is equally likely to be any permutation of (0,1,...,m-1).

Analyze Open Addressing

- The expected number of probes in an unsuccessful search is at most $1 /(1-\alpha)$
- Thus inserting an element into an opening address hash table with load factor α requires at most $1 /(1-\alpha)$ probes on average, assuming uniform hashing.
- The expected number of probes in a sucessful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$

