Ch16: Hash Tables

305233, 305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Dictionaries: Abstract Data Type

- Dictionaries (Abstract Data Type) is to maintain set of items, each with a key
 - INSERT(item)
 - DELETE(item)
 - SEARCH(key) -> return item with given key or report does not exist
- A has table is an effective data structure for implementing dictionaries.
- Worst case time for searching is O(n) but its expected time is O(1).

Dictionaries in Python

- D={1234: 'Bob',
 5678, 'Alice'}
- Search by D[key]
- Insert by D[key] = value
 - D[5678]='Robert'
- Delete by D[key]
 - del D[1234]

Direct-Address Tables

- A set of keys is in a set of **universe** U = {0,1,...,m-1} where m is not too large.
- A direct-address table is an array denoted by T[0..m-1] in which each position, or slot, corresponds to a key in the universe U.

Direct-Address Table

Direct-Address Tables

DIRECT-ADDRESS-SEARCH(T, k) return T[k]

DIRECT-ADDRESS-INSERT(T, x) T[key[x]] = x

DIRECT-ADDRESS-DELETE (T, k)T[key[x]] = NIL

Each operation takes only O(1) time.

Disadvantages of Direct-addressing

- Keys may not be non-negative integers.
- Direct-address tables require a large size of memory.
 - If the universe U is large, we have to store a table
 T of size U.

Disadvantages of Direct-addressing

- Keys may not be non-negative integers.
- Solution: using prehash to map key to nonnegative integers.
 - A string of bits represents an integer.
 - In python using function hash(x) means prehash.
- Direct-address tables require a large size of memory.
- Solution: using hashing

Hash Tables

- We use a hash function h to compute the slot from the key k.
- Hence h maps the universe U of keys into the slots of a hash table T[0..m-1]:

h:
$$U \rightarrow \{0,1,...,m-1\}$$

 We say that an element with key k hashes to slot h(k); we also say that h(k) is the hash value of key k.

Hash Table

Hash Table

Hash Table

Collision resolution by Chaining

 We put all the elements that hash to the same slot in a linked list.

Hash with Chaining

Hash with Chaining

Worst-case = length of the list

CHAINED-HASH-SEARCH(T, k)

search for an element with key k in list T[h(k)]

Worst-case = O(1)

CHAINED-HASH-INSERT(T, x)
insert x at the head of list T[h(key[x])]

Worst-case = O(1) if lists are doubly linked.

CHAINED-HASH-DELETE (T, k)

delete x from the list T[h(key[x])]

- Simple uniform hashing is an assumption that any given element is equally likely to hash into any of the m slots independently of where any other element has hashed to.
- For j = 0, 1, ..., m-1. Let us denote the length of the list T[j] by n_j, so that

$$n = n_0 + n_1 + ... + n_{m-1}$$

• The average value of n_j is $E[n_j] = \alpha = n/m$

- We assume that the hash value h(k) can be computed in O(1) time, so that the time required to search for an element with key k depends linearly on the length $n_{h(k)}$ of the list T[h(k)].
- We consider two cases:
 - The search is unsuccessful.
 - The search successfully finds an element with key k.

- The expected time to search unsuccessfully for a key k is the expected time to search to the end of the list T[h(k)].
- The list T[h(k)] has expected length= $E[n_{h(k)}] = \alpha$
- Hence the expected number of elements examined in unsuccessful search is α , and the total time required (including the time for computing h(k)) = O(1+ α)

- The expected time to search successfully for an element x is 1 more than the number of elements that appear before x in x's list.
- Let x_i denote the ith element inserted into the table for i= 1,2,...,n
- Let $k_i = \text{key}[x_i]$
- For keys k_i and k_j we define the random variable $X_{ij} = I\{h(k_i)=h(k_i)\}$
- Under the simple uniform hashing assumption, we have $Pr\{h(k_i)=h(k_j)\}=1/m$, and so $E[X_{ij}]=1/m$

 Hence the expected number of elements examined in a successful search is:

$$E\left[\frac{1}{n}\sum_{i=1}^{n}(1+\sum_{j=i+1}^{n}X_{ij})\right] = 1 + \frac{1}{nm}(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i)$$

$$=\frac{1}{n}\sum_{i=1}^{n}(1+\sum_{j=i+1}^{n}E[X_{ij}]) = 1 + \frac{1}{nm}(n^{2}-\frac{n(n+1)}{2})$$

$$=\frac{1}{n}\sum_{i=1}^{n}(1+\sum_{j=i+1}^{n}\frac{1}{m}) = 1 + \frac{n-1}{2m}$$

$$=1 + \frac{1}{nm}\sum_{i=1}^{n}(n-i) = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n}$$

Total time required for a successful search is $O(1+\alpha)$

- If the number of hash-table slots is at least proportional to the number of elements in the table, we have n = O(m) and, consequently $\alpha = n/m = O(m)/m = O(1)$.
- Searching takes constant time on average.
- All dictionary operations can be supported in O(1) time on average.

Hash Functions

- A good hash function satisfies (approximately) the assumption of simple uniform hashing:
 - Each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to.
- It is typically not possible to check this condition.

The Division Method

 $h(k) = k \mod m$

- For example, if hash table has size m = 12 and key k = 100 then h(k) = 4
- We usually avoid certain values of m. For example m should not be a power of 2.
- A prime is often a good choice for m.

The Multiplication Method

$$h(k) = [m(k A mod 1)]$$

$$h(k) = [(k.A) \mod 2^w] >> (w-p)$$

- A is in the range 0 < A < 1, suggest that $A = (5^{1/2} 1)/2 = 0.6180339887...$
- $m = 2^p$
- k has w bits.

The Multiplication Method

Example: The Multiplication Method

- k = 123456, p = 14, $m = 2^{14} = 16384$, w = 32
- Hence choose A to be the fraction of the form $s/2^{32}$ that is closest to $(5^{1/2}-1)/2$.
- A = 2654435769
- k.s = 327706022297664

$$= (76300.2^{32}) + 17612864$$

14 most significant bits of r0 yield the value h(k) = 67

Universal Hashing

$$h(k) = [(ak+b)mod p] mod m$$

- a, b are randomed and be in {0,1,..,p-1}
- p is a prime which is greater than the size of universe.
- The worst case key $k_i != k_j$: $Pr\{h(k_i)=h(k_i)\}=1/m$

Collision resolution by Open Addressing

- Each table entry contains either an element of the dynamic set or NIL.
 - No chaining and only 1 item per slot
- When searching for an element, we examine table slots until the desired element is found or it is clear that the element is not in the table.
- In open addressing the hash table can fill up so that no further insertions can be made.
- The load factor α can never exceed 1.

- To perform insertion using open addressing, we successively examine, or probe, the hash table until we find an empty slot in which to put the key.
- Instead of being fixed in the order 0,1,...,m-1 the sequence of positions probed depends upon the key being inserted.

The hash function becomes:

```
h: U x {0,1,...,m-1} -> {0,1,...,m-1}
```

For every key k, the probe sequence <h(k,0), h(k,1), ...,h(k, m-1)>
 be a permutation of <0,1,...,m-1>

```
HASH-INSERT (T, k)
i = 0
repeat j = h(k,i)
      if T[j] = NIL
             then T[j] = k
                    return j
      else i = i+1
until i = m
error "hash table overflow"
```

```
HASH-SEARCH (T, k)
i = 0
repeat j = h(k,i)
    if T[ j ] = k
        then return j
    i = i+1
until T[ j ]=NIL or i =m
return NIL
```

Example: Open Addressing

```
• insert(586), h(586,1) = 1
```

•

- insert(481), h(481,1) = 6
- insert(496) , h(496,1) =4
- insert(496) , h(496,2) =1
- insert(496), h(496,3) = 3

0

1

2

3

4

5

6

7

Fail probe

Linear Probing

Given an ordinary hash function

 the method of linear probing use the hash function :

$$h(k,i) = (h'(k) + i) \mod m$$

- For i = 0,1,...,m-1
- Long runs of occupied slots build up, increasing the average search time!!

Quadratic Probing

Given an ordinary hash function

 the method of quadratic probing use the hash function :

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

• For i = 0,1,...,m-1 and c_1 and c_2 are not equal to 0.

Double Probing

Given an ordinary hash function

 the method of double probing use the hash function :

$$h(k,i) = (h_1(k) + i h_2(k)) \mod m$$

- For i = 0,1,...,m-1 and h₁(k) and h₂(k) are auxiliary hash functions.
- The value h₂(k) must be relatively prime to the hash-table size m.

Analyze Open Addressing

- We have at most one element per slot, thus $n \le m$, which implies $\alpha \le 1$.
- We assume the uniform hashing is used.
- The probe sequence <h(k,0), h(k,1), ...,h(k, m-1)> used to insert or search for each key k is equally likely to be any permutation of (0,1,...,m-1).

Analyze Open Addressing

- The expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$
- Thus inserting an element into an opening address hash table with load factor α requires at most $1/(1-\alpha)$ probes on average, assuming uniform hashing.
- The expected number of probes in a successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$