Ch17: Single Source Shortest Path

305233, 305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Shortest Path Problem

- A motorist wishes to find the shortest possible route from Chicago to Boston.
- Given a road map of the US on which the distance between each pair of adjacent intersections is marked.
- How can we determine the shortest route?

Shortest Path Problem

- Given a weighted directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with weight function
w: E-> R
- Mapping edges to read valued weights.
- Let path $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ and $\left(v_{i}, v_{i+1}\right) \in E$ for $0 \leq i<k$
- The weight of path $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is the sum of the weights of its constituent edges:

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- We define the shortest-path weight from u to v by

$$
\delta(u, v)=\min \{w(p): u \rightarrow v\}
$$

If there is a path from u to v , otherwise $\delta(u, v)=\infty$

Shortest Path Problem

Shortest Path Problem

Shortest Path Problem

$$
\delta(s, c)=6 ? \text { Can we find a shorter path? }
$$

Shortest Path Problem

Representing Shortest Path

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- For each vertex $\mathrm{v} \in \mathrm{V}$, a predecessor $\mathbb{T}[\mathrm{v}]$ that is either another vertex or NIL.
- We denote $d(v)$ as a value inside a circle(graph) to be a current weight.
- We denote $\mathbb{T}[\mathrm{v}]$, for any vertex v , as a predecessor on the current best path to v.
- ITs]=NIL

Representing Short Path

9[e] $=\mathrm{a}$
9[a] = s

Negative-weight Edges

- There may be edges whose weights are negative.
- If there is a negative-weight cycle reachable from s, shortest-path weights are not well defined.
- If there is a negative-weight cycle on some path from s to v , we define $\delta(s, v)=-\infty$

Negative-weight Edges

Negative-weight Edges

General Structure of Shortest Path

- Initialize single source
- For $u \in V$, we set $d[v]=\infty, \mathbb{q}[u]=$ NIL and $d[s]=0$
- Relaxation
- Repeatedly select edge(u,v) and relax(u,v) by checking the condition:

$$
\text { if } \begin{aligned}
& \mathrm{d}[\mathrm{v}]>\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
& \text { then } \mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
& \mathrm{n}[\mathrm{v}]=\mathrm{u}
\end{aligned}
$$

Initialize-Single-Source(G,s)

for each vertex v in $\mathrm{V}[\mathrm{G}]$
do $d[v]=\infty$
T [v] $=\mathrm{NIL}$
$\mathrm{d}[\mathrm{s}]=0$

Initialize-Single-Source(G,s)

Relaxation(u,v,w)

$$
\begin{aligned}
& \text { if } \mathrm{d}[\mathrm{v}]>\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
& \text { then } \mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
& \mathrm{q}[\mathrm{v}]=\mathrm{u}
\end{aligned}
$$

Relaxation(d, c, w(d,c))

Shortest path in Directed Acyclic Graphs

- We can compute shortest paths from a single source in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time using relaxation on edges of a weighted directed acyclic graph(dag).

DAG-SHORTEST-PATHS(G,w,s)

topologically sort the vertices of G INITIALIZE-SINGLE-SOURCE(G,s)
for each vertex u, taken in topologically sorted order do for each vertex $v \in \operatorname{Adj}[u]$ do $\operatorname{RELAX}(u, v, w)$

Example: DAG

Dijkstra Algorithm

- Solves the single-source shortest-paths problem on a weighted directed graph $\mathrm{G}=$ (V, E) for the case in which all edge weights are nonnegative.
- We assume that $w(u, v) \geq 0$ for each edge (u, v) $\epsilon \mathrm{E}$.

Dijkstra(G,w,s)

```
INITIALIZE-SINGLE-SOURCE(G,s)
S = \emptyset
Q = V[G]
while Q != \varnothing
        do u = EXTRACT-MIN(Q)
        S = S U{u}
        for each vertex v & Adj[u]
                do RELAX(u,v,w)
```


Analyze Dijkstra

- The running time of Dijkstra depends on how to implement the min-priority queue.
- If we implement the min-priority queue with a binary min-heap which has running time $O(\lg V)$ if all vertices are reachable from the source. Hence total time is $\mathrm{O}((\mathrm{V}+\mathrm{E}) \lg \mathrm{V})$
$=O(E \lg V)$

Example: Dijkstra

$$
\begin{aligned}
& S=\{ \} \\
& Q=\{0, \infty, \infty, \infty, \infty\}
\end{aligned}
$$

Example: Dijkstra

$$
\begin{aligned}
& S=\{s\} \\
& Q=\{0,10,5, \infty, \infty\}
\end{aligned}
$$

Example: Dijkstra

$$
\begin{aligned}
& S=\{s, y\} \\
& Q=\{0,8,5,14,7\}
\end{aligned}
$$

Example: Dijkstra

$$
\begin{aligned}
& S=\{s, y, z\} \\
& Q=\{0,8,5,13,7\}
\end{aligned}
$$

Example: Dijkstra

$$
\begin{aligned}
& S=\{s, t, y, z\} \\
& Q=\{0,8,5,9,7\}
\end{aligned}
$$

Example: Dijkstra

$$
\begin{aligned}
& S=\{s, t, x, y, z\} \\
& Q=\{0,8,5,9,7\}
\end{aligned}
$$

Bellman-Ford Algorithm

- Solves the single-source shortest-paths problem in general case in which edge weights may be negative.
- The Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source. If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortes paths and their weights.

Bellman-Ford(G,w,s)

```
INITIALIZE-SINGLE-SOURCE(G,s)
for i=1 to |V[G]| -1
    do for each edge (u,v) \inE[G]
        do RELAX(u,v,w)
for each edge (u,v) \inE[G]
    do if d[v] > d[u] + w(u,v)
    then return false
return true
```


Analyze Bellman-Ford

- The running time is $\mathrm{O}(\mathrm{VE})$ since the initialization take $\mathrm{O}(\mathrm{V})$ and each of $|\mathrm{V}|-1$ passes over edges in lines 2-4 takes $O(E)$, and for loop in lines 5-7 takes $O(E)$ time.

Example: Bellman-Ford

RETURN true
With shortest path $0,2,4,7,-2$

Negative weighted cycle

The shortest simple path to reach v from $s=13$ If we have negative edge cycle in a path, it takes exponential running time to solve.

