
Ch18: Dynamic Programming

305233, 305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Dynamic Programming

• Solves problems by combing the solutions to
subproblems.

• Similar to divide-and –conquer method but
dynamic programming is applicable when
subproblems are not independent, that is , when subproblems are not independent, that is , when
subproblems share subsubproblems.

• A dynamic-programming algorithm solves every
subsubproblem just once and then saves its
answer in a table, thereby avoiding the work of
recomputing the answer every time the
subsubproblem is encountered. e.

Dynamic Programming

• Dynamic programming is typically applied to
optimization problems, can be many possible
solutions. We wish to find a solution with the
optimal (minimum or maximum) value. optimal (minimum or maximum) value.

Fibonacci Numbers

• F1 = F2 = 1

• Fn = Fn-1 + Fn-2

• Goal : to compute Fn

Naïve Recursive Algorithm

fib(n):
if n <= 2

then f = 1
else f = fib(n-1) + fib(n-2)

return freturn f

Exponential running time !!
T(n) = T(n-1) + T(n-2) + (1)

>= 2 T(n-2)
=

)2(2/n

Naïve Recursive Algorithm

Fn

Fn-1
Fn-2

F F F FFn-2 Fn-3 Fn-3 Fn-4

Memoized Dynamic Programming
Algorithm

memo= { }
fib(n) :

if n is in memo
then return memo[n]

if n <=2 if n <=2
then f =1

else f = fib(n-1) + fib(n-2)

memo[n] = f
return f

Memoized Dynamic Programming
Algorithm

Fn

Fn-1
Fn-2

F F F FFn-2 Fn-3 Fn-3 Fn-4

we compute only
once!

Memoized Dynamic Programming
Algorithm

• fib(k) only recurses the first time it is called.

• For all k, memoized calls cost (1)

• The number of nonmemoized call is n

fib(1), fib(2), … , fib(n)

fib(1), fib(2), … , fib(n)

• The non-recursive work per call is (1)

• Hence running time = (n)

Dynamic Programming

• Dynamic programming algorithm in general is
to memorize and re-use solutions to
subproblems that help solving the problem.

• Hence dynamic programming is a recursion • Hence dynamic programming is a recursion
and memoization.

• The running time is equal to the number of
subproblems x (time/subproblem)

– Ex: n x (1) = (n)

Don’t count memoized recursion!!

Bottom-up Dynamic Programming
algorithm

fib= { }
for k from 1 to n :

if k <=2
then f =1

else f = fib[k-1] + fib[k-2]else f = fib[k-1] + fib[k-2]

fib[k] = f
return fib[n]

Running time is (n)

Bottom-up Dynamic Programming
algorithm

• It has exactly the same computation to
memoization.

• It uses topological sort of subproblems
dependency.dependency.

– DAG

FnFn-1Fn-2Fn-3

Single-Source Shortest Paths

vs

Guess the first edgeGuess the first edge

vs

)),(),((min),(
,

vuwusvs
Evu

),(us w(u,v)
Recursive algo!!

Do memoize!

Assembly-line Scheduling

Assembly-line Scheduling

• The structure of the fastest way through the
factory.

• There are 2 choices:

• Come from station S and then directly to • Come from station S1,j-1 and then directly to
station S1,j

• Come from station S2,j-1 and then been
transferred to station S1,j

Assembly-line Scheduling

• A recursive solution

• The fastest time to get a chassis all the way
through the factory is denoted by f*.

• f* = min(f [n] + x , f [n] + x)• f* = min(f1[n] + x1 , f2[n] + x2)

• f1[1] = e1 + a1,1

• f2[1] = e2 + a2,1

Assembly-line Scheduling

• A recursive solution

• f1[j] = f1[j-1] + a1,j , and

• f1[j] = f2[j-1] + t2,j-1 + a1,j

• f [j] = min (f [j-1] + a , f [j-1] + t + a)• f1[j] = min (f1[j-1] + a1,j , f2[j-1] + t2,j-1 + a1,j)

• f2[j] = f2[j-1] + a2,j , and

• f2[j] = f1[j-1] + t1,j-1 + a2,j

• f2[j] = min (f2[j-1] + a2,j , f1[j-1] + t1,j-1 + a2,j)

Assembly-line Scheduling

• A recursive solution

• f1[j] = e1 + a1,1 if j = 1

• f1[j] = min (f1[j-1] + a1,j , f2[j-1] + t2,j-1 + a1,j)

if j ≥ 2if j ≥ 2

• f2[1] = e2 + a2,1 if j=1

• f2[j] = min (f2[j-1] + a2,j , f1[j-1] + t1,j-1 + a2,j)

if j ≥ 2

Assembly-line Scheduling

Assembly-line Scheduling

• Computing the fastest times

• If we use recursion, the running time will be

•

• If we use bottom-up dynamic programming,

)2(2/n

• If we use bottom-up dynamic programming,
the running time will be only (n)

Fastest-Way(a, t, e, x, n)
f1[1] = e1+ a1,1

f2[1] = e2+ a2,1

for j = 2 to n
do if f1[j-1] + a1,j ≤ f2[j-1] + t2,j-1 + a1,j

then f1[j] = f1[j-1] + a1,j

l1[j] = 1
else f1[j] = f2[j-1] + t2,j-1 + a1,j

l1[j] = 21

if f2[j-1] + a2,j ≤ f1[j-1] + t1,j-1 + a2,j

then f2[j] = f2[j-1] + a2,j

l1[j] = 2
else f2[j] = f1[j-1] + t1,j-1 + a2,j

l1[j] = 1
if f1[n] + x1 ≤ f2[n] + x2

then f* = f1[n] + x1

l* = 1
else f* = f2[n] + x2

l* = 2

Print-Stations(l , l*, n)

i = l*
print “line” i”,sation “n
for j = n downto 2

do i = li[j]
print “line” i”,station” j-1print “line” i”,station” j-1

