Ch18: Dynamic Programming

305233, 305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Dynamic Programming

- Solves problems by combing the solutions to subproblems.
- Similar to divide-and -conquer method but dynamic programming is applicable when subproblems are not independent, that is, when subproblems share subsubproblems.
- A dynamic-programming algorithm solves every subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time the subsubproblem is encountered. e.

Dynamic Programming

- Dynamic programming is typically applied to optimization problems, can be many possible solutions. We wish to find a solution with the optimal (minimum or maximum) value.

Fibonacci Numbers

- $F_{1}=F_{2}=1$
- $F_{n}=F_{n-1}+F_{n-2}$
- Goal : to compute F_{n}

Naïve Recursive Algorithm

fib(n):

$$
\text { if } n<=2
$$

$$
\text { then } f=1
$$

else $f=f i b(n-1)+f i b(n-2)$
return f

$$
\begin{aligned}
& \text { Exponential running time !! } \\
& \begin{aligned}
T(n) & =T(n-1)+T(n-2)+\Theta(1) \\
& >=2 T(n-2) \\
& =\Theta\left(2^{n / 2}\right)
\end{aligned}
\end{aligned}
$$

Naïve Recursive Algorithm

Memoized Dynamic Programming Algorithm

```
memo= { }
fib(n) :
    if n}\mathrm{ is in memo
        then return memo[n]
    if n<=2
        then f=1
    else f=fib(n-1)+fib(n-2)
    memo[n] = f
return f
```


Memoized Dynamic Programming Algorithm

Memoized Dynamic Programming Algorithm

- fib(k) only recurses the first time it is called.
- For all k, memoized calls cost Θ (1)
- The number of nonmemoized call is n fib(1), fib(2), ... , fib(n)
- The non-recursive work per call is Θ (1)
- Hence running time $=\Theta(n)$

Dynamic Programming

- Dynamic programming algorithm in general is to memorize and re-use solutions to subproblems that help solving the problem.
- Hence dynamic programming is a recursion and memoization.
- The running time is equal to the number of subproblems x (time/subproblem)
- Ex: $n \times \Theta(1)=\Theta(n)$

Bottom-up Dynamic Programming algorithm

```
fib= {}
for k from 1 to n :
    if k <=2
                then f=1
    else f= fib[k-1] + fib[k-2]
    fib[k] = f
return fib[n]
```


Bottom-up Dynamic Programming algorithm

- It has exactly the same computation to memoization.
- It uses topological sort of subproblems dependency.
- DAG

Single-Source Shortest Paths

$$
\delta(s, v)=\min _{u, v \in E}(\delta(s, u)+w(u, v))
$$

Recursive algo!!
Do memoize!
$\delta(s, u)$
$w(u, v)$

Assembly-line Scheduling

Assembly-line Scheduling

- The structure of the fastest way through the factory.
- There are 2 choices:
- Come from station $\mathrm{S}_{1, j-1}$ and then directly to station $\mathrm{S}_{1, \mathrm{j}}$
- Come from station $\mathrm{S}_{2, \mathrm{j}-1}$ and then been transferred to station $\mathrm{S}_{1, \mathrm{j}}$

Assembly-line Scheduling

- A recursive solution
- The fastest time to get a chassis all the way through the factory is denoted by f^{*}.
- $f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right)$
- $f_{1}[1]=e_{1}+a_{1,1}$
- $f_{2}[1]=e_{2}+a_{2,1}$

Assembly-line Scheduling

- A recursive solution
- $f_{1}[j]=f_{1}[j-1]+a_{1, j}$, and
- $f_{1}[j]=f_{2}[j-1]+t_{2, j-1}+a_{1, j}$
- $f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)$
- $f_{2}[j]=f_{2}[j-1]+a_{2, j}$, and
- $f_{2}[j]=f_{1}[j-1]+t_{1, j-1}+a_{2, j}$
- $f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)$

Assembly-line Scheduling

- A recursive solution
- $f_{1}[j]=e_{1}+a_{1,1}$ if $j=1$
- $f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)$
if $\mathrm{j} \geq 2$
- $f_{2}[1]=e_{2}+a_{2,1}$ if $j=1$
- $f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)$ if $\mathrm{j} \geq 2$

Assembly-line Scheduling

(a)

$$
\quad f^{*}=38
$$

j	2	3	4	5	6
$l_{1}[j]$	1	2	1	1	2
$l_{2}[j]$	1	2	1	2	2

(b)

Assembly-line Scheduling

- Computing the fastest times
- If we use recursion, the running time will be
- $\quad \Theta\left(2^{n / 2}\right)$
- If we use bottom-up dynamic programming, the running time will be only $\Theta(n)$

Fastest-Way(a, t, e, x, n)

$$
\begin{aligned}
& f_{1}[1]=e_{1}+a_{1,1} \\
& f_{2}[1]=e_{2}+a_{2,1} \\
& \text { for } j=2 \text { to } n \\
& \text { do if } f_{1}[j-1]+a_{1, j} \leq f_{2}[j-1]+t_{2, j-1}+a_{1, j} \\
& \text { then } f_{1}[j]=f_{1}[j-1]+a_{1, j} \\
& I_{1}[j]=1 \\
& \text { else } f_{1}[j]=f_{2}[j-1]+t_{2, j-1}+a_{1, j} \\
& I_{1}[j]=2 \\
& \text { if } f_{2}[j-1]+a_{2, j} \leq f_{1}[j-1]+t_{1, j-1}+a_{2, j} \\
& \text { then } f_{2}[j]=f_{2}[j-1]+a_{2, j} \\
& I_{1}[j]=2 \\
& \text { else } f_{2}[j]=f_{1}[j-1]+t_{1, j-1}+a_{2, j} \\
& I_{1}[j]=1 \\
& \text { if } f_{1}[n]+x_{1} \leq f_{2}[n]+x_{2} \\
& \text { then } f^{*}=f_{1}[n]+x_{1} \\
& I^{*}=1 \\
& \text { else } f^{*}=f_{2}[n]+x_{2} \\
& I^{*}=2
\end{aligned}
$$

Print-Stations(I, I*, n)

$$
\begin{aligned}
& \mathrm{i}=\mathrm{l}^{*} \\
& \text { print "line" } \mathrm{i}^{\prime \prime} \text {,sation " } \mathrm{n} \\
& \text { for } \mathrm{j}=\mathrm{n} \text { downto } 2 \\
& \quad \begin{array}{l}
\mathrm{i}=\mathrm{I}_{\mathrm{i}}[\mathrm{j}]
\end{array} \\
& \quad \text { print "line" } \mathrm{i} \text { ", station" } \mathrm{j}-1
\end{aligned}
$$

