Ch18: Dynamic Programming

305233, 305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Dynamic Programming

e Solves problems by combing the solutions to
subproblems.

* Similar to divide-and —conquer method but
dynamic programming is applicable when
subproblems are not independent, that is, when
subproblems share subsubproblems.

* A dynamic-programming algorithm solves every
subsubproblem just once and then saves its
answer in a table, thereby avoiding the work of
recomputing the answer every time the
subsubproblem is encountered. e.

Dynamic Programming

* Dynamic programming is typically applied to
optimization problems, can be many possible
solutions. We wish to find a solution with the

optimal (minimum or maximum) value.

Fibonacci Numbers

* F,=F,=1
* I:n= I:n-l-l_l:n-z

* Goal : to compute F,

Naive Recursive Algorithm

fib(n):
ifn<=2
thenf=1
else f=fib(n-1) + fib(n-2)
return f

Exponential running time !!
T(n) =T(n-1) + T(n-2) + (1)

>=2 T(n-2)

Naive Recursive Algorithm

Fn
/\F
Fo1 n-2
RN /\

I:n-2 Fn-3 Fn-3 I:n-4

Memoized Dynamic Programming
Algorithm

memo-={ }
fib(n) :
if nisin memo
then return memo|[n]
if n <=2
then f =1
else f=fib(n-1) + fib(n-2)

memoln] =f
return f

Memoized Dynamic Programming
Algorithm

/\

we compute only
once!

Memoized Dynamic Programming
Algorithm

fib(k) only recurses the first time it is called.

For all k, memoized calls cost ® (1)

The number of nonmemoized call is n
fib(1), fib(2), ..., fib(n)

The non-recursive work per call is®(1)

Hence running time = ®(n)

Dynamic Programming

* Dynamic programming algorithm in general is
to memorize and re-use solutions to
subproblems that help solving the problem.

* Hence dynamic programming is a recursion
and memoization.

 The running time is equal to the number of
subproblems x (time/subproblem)

—Ex: nx® (1) =O(n)

Don’t count memoized recursion!!

Bottom-up Dynamic Programming
algorithm

fib={}
for kfromlton:
if k <=2
then f =1
else f=fib[k-1] + fib[k-2]

fib[k] =f
return fib[n]

Running timeis (n)

Bottom-up Dynamic Programming
algorithm

* |t has exactly the same computation to
memoization.

* |t uses topological sort of subproblems
dependency.
— DAG

Single-Source Shortest Paths

Guess the first edge

(0(s,u)+w(u,v))

o(s,v) =min

u,vek

Recursive algo!!
Do memoize!

o) (S,Yu)

Assembly-line Scheduling

station 5, ; station§;, station Y, ; station 8 4 station &, , | station §, ,

assembly line 1

i completed
Erm;ru; —r auto
i exits

station 5, station S, > station 5,5 station S5 4 station S, ,, | station §, ,

Assembly-line Scheduling

The structure of the fastest way through the
factory.

There are 2 choices:

Come from station S, ; ; and then directly to
station S, ;

Come from station S, ; ; and then been
transferred to station S, ,

Assembly-line Scheduling

A recursive solution

The fastest time to get a chassis all the way

through the factory is denoted by f*.

*=min(f[n] +x;, f,[n] +x,)

fil
f5l

1
1

=€;%tdg,

=€,*td;,

Assembly-line Scheduling

A recursive solution

flil = f,[i-1] +a;; , and

fali

filil = min (f,[j-1] +a;; , f,-1]1 +t,, 1 +a; ;)

f,lil = f,[j-1] + a,; , and

Al

f,[j

=f,[j-1] + t)iq+ay;

=f,[j-1] +ty 1 + 2y,

J=min (f,[j-1] +a,; , fi[j-1] +t;;; +a,;)

Assembly-line Scheduling

A recursive solution

f,0i.
f,0i.

f,[1.
Al

=e,+ay, if j=1

= min (f[j-1]
if |

+ag; , f[j-1] + t)iq+ al,j)
> 2

=e,+ta,, ifj=1

= min (f,[j-1.

if

+3y; , f[j-1] + t),+a,,)
> 2

Assembly-line Scheduling

station §; ; station§,, station§,; stationS,;, station§, s station S, g

e

assembly line 1

: completed
chassis P
] auto
enters 3
exits

assembly line 2

station §,; stationS,, stationS,; stationS,, stationS,s station S,
(a)
§i 1 EF 4 5 & j 2 3 4 5 6
AHU1 | 9]18|20(24(32(35| | s Lt |1 LIS 5 o3
Hl |12]|16(22(25]|30(37 = Ll |1 el T s B

(b)

Assembly-line Scheduling

Computing the fastest times
If we use recursion, the running time will be
@(271/2)

If we use bottom-up dynamic programming,
the running time will be only ®(n)

Fastest-Way(a, t, e, X, n)

fl[l] =€t al,l
fz[l] =€)t a2,1
forj=2ton
doif fy[j-1] +ay; <f,[j-1] +t,;, +ay;
then f,[j] = f,[j-1] + ay
l,[j]=1
else f,[jl =f,[j-1] +t,, +a;;
l,[j] =2

iff,[j-1] +a,; <f[J-1] +t;;, +a,;
then f,[j] = f,[j-1] + a,,
|1[j] =2
else f,[j] = f,[j-1] + ty 14 + a3y,
|1[j] =1
if f,[n] +x, <f,[n] +x,
then f* =f,[n] + x,
1* =1
else f*=1,[n]+x,
|* =2

Print-Stations(|, I*, n)

i=*

7 N

print “line” i”,sation “n
for j=n downto 2
doi= L[j]

7 N

print “line” i”,station” j-1

