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Dynamic Programming

• Solves problems by combing the solutions to 
subproblems.

• Similar to divide-and –conquer method but 
dynamic programming is applicable when 
subproblems are not independent, that is , when subproblems are not independent, that is , when 
subproblems share subsubproblems.

• A dynamic-programming algorithm solves every 
subsubproblem just once and then saves its 
answer in a table, thereby avoiding the work of 
recomputing the answer every time the 
subsubproblem is encountered. e.



Dynamic Programming

• Dynamic programming is typically applied to 
optimization problems, can be many possible 
solutions. We wish to find a solution with the 
optimal (minimum or maximum) value. optimal (minimum or maximum) value. 



Fibonacci Numbers

• F1 = F2 = 1

• Fn = Fn-1 + Fn-2

• Goal : to compute Fn



Naïve Recursive Algorithm

fib(n):
if n <= 2

then f = 1
else f = fib(n-1) + fib(n-2)

return freturn f

Exponential running time !!
T(n) = T(n-1) + T(n-2) +       (1)
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Naïve Recursive Algorithm
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Memoized Dynamic Programming 
Algorithm

memo= { }
fib(n) :

if n is in memo 
then return memo[n]

if n <=2 if n <=2 
then f =1

else  f = fib(n-1) + fib(n-2)

memo[n] = f
return f



Memoized Dynamic Programming 
Algorithm
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we compute only 
once!



Memoized Dynamic Programming 
Algorithm

• fib(k) only recurses the first time it is called.

• For all k, memoized calls cost     (1)

• The number of nonmemoized call is n

fib(1), fib(2), … , fib(n)



fib(1), fib(2), … , fib(n)

• The non-recursive work per call is    (1)

• Hence running time =    (n)







Dynamic Programming

• Dynamic programming  algorithm in general is 
to memorize and re-use solutions to 
subproblems that help solving the problem.

• Hence dynamic programming is a recursion • Hence dynamic programming is a recursion 
and memoization.

• The running time is equal to  the number of 
subproblems x (time/subproblem)

– Ex:  n x     (1) =    (n) 

Don’t count memoized recursion!!



Bottom-up Dynamic Programming 
algorithm

fib= { }
for  k from 1 to n :

if k <=2 
then f =1

else  f = fib[k-1] + fib[k-2]else  f = fib[k-1] + fib[k-2]

fib[k] = f
return fib[n]

Running time is      (n)



Bottom-up Dynamic Programming 
algorithm

• It has exactly the same computation to 
memoization.

• It uses topological sort of subproblems
dependency.dependency.

– DAG
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Single-Source Shortest Paths
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Recursive algo!!

Do memoize!



Assembly-line Scheduling



Assembly-line Scheduling

• The structure of the fastest way through the 
factory.

• There are 2 choices:

• Come from station S and then directly to • Come from station S1,j-1 and then directly to 
station S1,j

• Come from station S2,j-1 and then been 
transferred to station S1,j



Assembly-line Scheduling

• A recursive solution

• The fastest time to get a chassis all the way 
through the factory is denoted by f*.

• f* = min( f [n] + x , f [n] + x )• f* = min( f1[n] + x1 , f2[n] + x2 )

• f1[1] = e1 + a1,1 

• f2[1] = e2 + a2,1  



Assembly-line Scheduling

• A recursive solution

• f1[j] = f1[j-1] + a1,j , and

• f1[j] = f2[j-1] + t2,j-1 + a1,j

• f [j] = min (f [j-1] + a , f [j-1] + t + a )• f1[j] = min (f1[j-1] + a1,j , f2[j-1] + t2,j-1 + a1,j )

• f2[j] = f2[j-1] + a2,j , and

• f2[j] = f1[j-1] + t1,j-1 + a2,j

• f2[j] = min (f2[j-1] + a2,j , f1[j-1] + t1,j-1 + a2,j )



Assembly-line Scheduling

• A recursive solution

• f1[j] = e1 + a1,1   if  j = 1

• f1[j] = min (f1[j-1] + a1,j ,  f2[j-1] + t2,j-1 + a1,j) 

if j ≥ 2if j ≥ 2

• f2[1] = e2 + a2,1 if j=1

• f2[j] = min (f2[j-1] + a2,j , f1[j-1] + t1,j-1 + a2,j )

if j ≥ 2



Assembly-line Scheduling



Assembly-line Scheduling

• Computing the fastest times

• If we use recursion, the running time will be

•

• If we use bottom-up dynamic programming, 

)2( 2/n

• If we use bottom-up dynamic programming, 
the running time will be only    (n)



Fastest-Way(a, t, e, x, n)
f1[1] = e1+ a1,1

f2[1] = e2+ a2,1

for j = 2 to n
do if f1[j-1] + a1,j ≤ f2[j-1] + t2,j-1 + a1,j

then f1[j] = f1[j-1] + a1,j

l1[j] = 1 
else f1[j] = f2[j-1] + t2,j-1 + a1,j

l1[j] = 21

if f2[j-1] + a2,j ≤ f1[j-1] + t1,j-1 + a2,j

then f2[j] = f2[j-1] + a2,j

l1[j] = 2
else f2[j] = f1[j-1] + t1,j-1 + a2,j

l1[j] = 1
if f1[n] + x1  ≤ f2[n] + x2  

then f* = f1[n] + x1  

l* = 1
else   f* = f2[n] + x2

l* = 2   



Print-Stations( l , l*, n)

i = l*
print “line” i”,sation “n
for  j = n downto 2

do i =  li[j] 
print “line” i”,station” j-1print “line” i”,station” j-1


