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Example: Accuracy of an Algorithm
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Example: Accuracy of an Algorithm

radian

degree CLIENE (S:i:seine
angle*Pi/180

If before running the
algorithm, radian =
angle*pi/180 angle*pi/180

then after running the
algorithm, radian =



Example

import math

a = float{input ("Enter an angle in degrees: "))
r = a*(22/7)/180
print ("3¥f degrees = 3F.2f radians and =2in(3f) = %.2f and co=s(Ff) = F.2f" 3

(a,math.pi(a),math.=in(r) ,math.co=s(xr)))

degree = int {input ("Enter an angle in degrees: "})

import math

radian = [(degreemath.pi) /180

2in = math.=sin(radian)

co=s2ine = math.cos(radian)

print ("3d degrees = F.2f radians and =in(3¥d) = 3F.2f and cos(Fd) = F.2I"F

(degree, radian,degree,=sin, degree,cosine))
1



Example

import math

pi = 3.14

angle = int({input ("Enter an angle in degrees: "))
radian = angle#® (pi) /180

print ("3¥d degrees = %F.2f radian"™ % angle, radian)
number = math.sin{input ("Enter an angle in degrees:'}))

Ra = (number* (math.pi))/180
math.sin = number
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Example: Accuracy of an Algorithm
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Domino tile |eft/r|ght =2

Place Left / Right/ None
(left, right) or

left/right =9

If before running the then after running the
algorithm, right of input = algorithm, right of input =
left of given or left of input left of given or left of input

= right of given = right of given



Example

print ("Enter your domino tile: ™)
X = int (input(})
¥y = int {(input () )

1f x==2 and vV/W8% or x=89 and y=—2:
print ("Place wvour block the righ."™)
print ("Place wvour block the left."™)
elif =9 or yv—9:
print ("Flace vour block the righ.")
elif x==2 or yv—2:
print ("Place vour block the left."™)

print ("Place wvour block the tile.™)




Example

X = int {input ("Enter your domino title:
¥ = int {input ("Enter your domino title:

if =2 and y=—9:

print {("place your block on the left

gelif =2 and y '= 84:
print ("place wyour
elif x'=2 and y =— 2:

print {("place wyour
elif =2 and y —2:

print {("place wyour
elif =9 and y — 8:

print {("place wyour
gelif =9 and y =— 2:

print {("place wyour
elif x'=2 and y =— 8:

print {("place wyour
elif x'=9 and yv = 9:

print {("place wyour
elif x'=89 and y = 2:

print {("place wyour
elif x'=9 and y = 2:

print {("cannot place

elif x'=89 and y '= 4:

print ("cannot place

elif x'=2 and y = 2:

print {("cannot place

elif xl=2 and v 1= 9:

print {("cannot place
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Example

print {int {(input ("Enter your domino

left = {(int{input (™ "
right = (int(input ("
1f left == or right

print ("Place your
print ("Place your

elif right == 9:
print ("Place your

elif left == 2:
print ("FPlace your
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print ("Cannot place yvour domino tile. ™)




Example: Accuracy of an Algorithm

10 numbers summation of 10 numbers

Then after running
the algorithm, sum =
summation of 10
numbers

If before running the
algorithm, sum =0



Example: Accuracy of an Algorithm

Sum — O summation of
- 10 numbers
foriin numbers:
sum = sum-+i

10 numbers

Then after running
the algorithm, sum =
summation of 10
numbers

If before running the
algorithm, sum =0



Example: Accuracy of an Algorithm

Roune i

sum = O summation of
0+1
foriin numbers:
sum = sum-+i

[1,2,3,4,5,6,7,8,9,10]

If before running loop Then after running
1, sum =0 loop 1, sum=1



Example: Accuracy of an Algorithm

ROUREC 2

sum = O summation of
O+1+2
foriin numbers:
sum = sum-+i

[1,2,3,4,5,6,7,8,9,10]

If before running loop Then after running
2, sum =1 loop 2, sum =3



Example: Accuracy of an Algorithm

Roune 33

sum = O summation of
o O0+1+2+3
foriin numbers:
sum = sum-+i

[1,2,3,4,5,6,7,8,9,10]

If before running loop Then after running
3, sum =3 loop 3, sum =6



Example: Accuracy of an Algorithm

Rounel 10

sum = O summation of
0+1 + 2+3+4+5

foriin numbers: +6+7+8+9+10
sum = sum-+i

[1,2,3,4,5,6,7,8,9,10]

If before running loop Then after running
10, sum =45 loop 10, sum =55

Before running loop N, we have sum value of loop N-1
/




What is a Loop Invariant?

* An loop invariant is a formal statement of a
properties of variables in an algorithm which
holds true just before and after each iteration
of running the loop.

e Similar to mathematical induction where the
initialization is proving a base case and the
maintenance is proving an inductive step.



proofs of a Loop Invariant

* |Initialization
— |t is true prior to the first iteration of the loop.

* Maintenance

— If it Is true before an iteration of the loop, it
remains true before the next iteration.

e Termination

— When the loop terminates, the invariant gives a
useful property that helps shows that the
algorithm is correct.



Example loop invariants with
summation

sum =0
for i=1 to length[A]
sum = sum + Ali]

What is a loop invariant for this code?

A property that will be true before and after
running the loop.

A loop invariant is i—1

before running loop i, sum = Z Alm]

m=1




Example loop invariants with
Let us check SummatIOn

with some

sample input

Initialization:
Ati=1,m=1-1=0

Input =1[9,5,7,4,2]

hence, sum=0
holds True!!!

sum =0
for i=1 to length[A]
sum = sum + Ali]




Example loop invariants with

summation
Maintenance: Input =1[9,5,7,4,2]

If sum (before) = sum from 1 to i-1 then

sum(before next iter) = sum from 1 to i-1 +1 Sum(before)
sumtoi-1

sum=0

1 0+9
for i=1 to length[A] KB L o
3 14 0+9+5+7
sum =sum + A[I] 4 21 0+9+5+7+4
5 25 0+9+5+7+4+2
6 27 stop

Termination: sum from 1 to n

sum = 0+9+5+7+4+2
Holds True!!




Example loop invariants with summation

sum=0
L ] for i=1 to length[A]

sum =sum + Ali]

A loop invariant is 1
before running at loop i, syum = Z Alm
m=1

Initialization: at loop 1, sum =0 (True!!)
Maintenance:

If at before running loop i, sum = A[1]+A[2]+...+A[i-1]

then after runningloop i, sum = A[1]+A[2]+...+A[i-1]+A][i]

Hence, before running loop i+1, sum = A[1]+A[2]+...+A[i-1]+A[i] (True!!)
Termination:

Goal(output of program) => SUn = ZA

i=1

At start of running at loop n+1, sum = A[1]+A[2]+...+A[n-1]+A[n] (True!!)



Exercise: Loop variant with Max Array

* Write a pseudo code of an algorithm for
finding a maximal number in an array of size n.

* Write a proof of the correctness of the
algorithm using loop invariants.

max = A[1]
for i=2 to length[A]
if max < A[i]

max = Ali]



Solution: Loop variant with Max Array

max = A[1]
for i=2 to length[A]
if max < Al[i]
max = Ali]
Loop Invariant = Before running loop i, max is the largest number from A[1] to A[i-1]

Initialization:
Before running first loop where i=2 , max = A[1] which is the maximum number of A[2-1] (True!!)

Maintenance:
If before running loop i, max is the largest number among A[1] to A[i-1]
then after running loop i, if max < A[i] then max = A[i] which is the largest of A[1... i]
if max > A[i] then max does not change and it is the largest of A[1...i].

Hence before running loop i+1, max is is the largest number among A[1] to A[i] (True!!)

Termination: at starting of loop n+1, max is the largest number among A[1] to A[n] (True!!)



Exercise: Insertion-Sort

initialization

for j=2 to length[A]
do key =A[j ]

. i=j-1
mainte-
whilei>0and A[i] > key
do A[i+1] =A[i]
i=i-1

___ Ali+1]=key

termination

A loop invariant =

all elementsin A[1...j—1] are in sorted order.




Exercise loop invariants with
Insertion-sort

for j=2 to length[A]
do key =A[j ]

i=j-1

whilei>0and A[i] > key
do A[i+1] = A[i]
i=i-1

Ali+1]=key



Exercise loop invariants with
insertion-sort

A loop invariant =

all elementsin A[1...j—1] are in sorted order.

Input =1[9,5,7,4,2]

i key | Al to ) lbefore) |1 | A > key | Al to3) ater
2

3
4
5



