Ch2: Loop Invariants

305233, 305234
Algorithm Analysis and Design

Jiraporn Pooksook
Naresuan University

Accuracy of an Algorithm

result = a +b

print(result)

then after running the

If before running the
algorithm, result= a+b

algorithm, result=a+b

Accuracy of an Algorithm

=3
n 1 o
[
P

W

Output

result=a +b |

O o

print(result)

Accuracy of an Algorithm

=3
n 1 o
> o5

Output

result =a +b |

O o

print(result)

Accuracy of an Algorithm

=3
n 1 o
[
P

o O

Output

result =a+b [

O o

print(result)

Accuracy of an Algorithm

=3
n 1 o
[
P

o O

Output

result =a+b [

O o

print(result)

Example: Accuracy of an Algorithm

radian
sine
cosine

degree

If before running the
algorithm, radian =?
cin=? cos="?

Then after running the
algorithm, radian =?
cin=? cos="?

Example: Accuracy of an Algorithm

radian

degree CLIENE (S:i:seine
angle*Pi/180

If before running the
algorithm, radian =
angle*pi/180 angle*pi/180

then after running the
algorithm, radian =

Example

import math

a = float{input ("Enter an angle in degrees: "))
r = a*(22/7)/180
print ("3¥f degrees = 3F.2f radians and =2in(3f) = %.2f and co=s(Ff) = F.2f" 3

(a,math.pi(a),math.=in(r) ,math.co=s(xr)))

degree = int {input ("Enter an angle in degrees: "})

import math

radian = [(degreemath.pi) /180

2in = math.=sin(radian)

co=s2ine = math.cos(radian)

print ("3d degrees = F.2f radians and =in(3¥d) = 3F.2f and cos(Fd) = F.2I"F

(degree, radian,degree,=sin, degree,cosine))
1

Example

import math

pi = 3.14

angle = int({input ("Enter an angle in degrees: "))
radian = angle#® (pi) /180

print ("3¥d degrees = %F.2f radian"™ % angle, radian)
number = math.sin{input ("Enter an angle in degrees:'}))

Ra = (number* (math.pi))/180
math.sin = number

Example: Accuracy of an Algorithm

O olo 0o

P P > O O O 0O 00O

- - O O O 0 O
Domino tile

Place Left / Right/ None
(left, right)

Example: Accuracy of an Algorithm

O O 0O

@ @ > O O O o O 5 60

: O O O O 0O O
Domino tile |eft/r|ght =2

Place Left / Right/ None
(left, right) or

left/right =9

If before running the then after running the
algorithm, right of input = algorithm, right of input =
left of given or left of input left of given or left of input

= right of given = right of given

Example

print ("Enter your domino tile: ™)
X = int (input(})
¥y = int {(input ())

1f x==2 and vV/W8% or x=89 and y=—2:
print ("Place wvour block the righ."™)
print ("Place wvour block the left."™)
elif =9 or yv—9:
print ("Flace vour block the righ.")
elif x==2 or yv—2:
print ("Place vour block the left."™)

print ("Place wvour block the tile.™)

Example

X = int {input ("Enter your domino title:
¥ = int {input ("Enter your domino title:

if =2 and y=—9:

print {("place your block on the left

gelif =2 and y '= 84:
print ("place wyour
elif x'=2 and y =— 2:

print {("place wyour
elif =2 and y —2:

print {("place wyour
elif =9 and y — 8:

print {("place wyour
gelif =9 and y =— 2:

print {("place wyour
elif x'=2 and y =— 8:

print {("place wyour
elif x'=9 and yv = 9:

print {("place wyour
elif x'=89 and y = 2:

print {("place wyour
elif x'=9 and y = 2:

print {("cannot place

elif x'=89 and y '= 4:

print ("cannot place

elif x'=2 and y = 2:

print {("cannot place

elif xl=2 and v 1= 9:

print {("cannot place

block

block

block

block

block

block

block

block

omn

on

on

on

on

on

on

on

the

the

the

the

the

the

the

the

vour block

vour block

vour block

vour block

= "))
= "))

amd right™)

left ™)
left ")
right ™)
left ")

left amd right™)

right ™)
right ™)
left ™)
tite ™)
tite ")
tite ™)
tite ")

Example

print {int {(input ("Enter your domino

left = {(int{input (™ "
right = (int(input ("
1f left == or right

print ("Place your
print ("Place your

elif right == 9:
print ("Place your

elif left == 2:
print ("FPlace your

N e ™ e W

1))
)

block
block

block

block

on
I

on

oT

the
the

the

the

tile : "}))

left.™)

right.™)

right.")

left.™)

print ("Cannot place yvour domino tile. ™)

Example: Accuracy of an Algorithm

10 numbers summation of 10 numbers

Then after running
the algorithm, sum =
summation of 10
numbers

If before running the
algorithm, sum =0

Example: Accuracy of an Algorithm

Sum — O summation of
- 10 numbers
foriin numbers:
sum = sum-+i

10 numbers

Then after running
the algorithm, sum =
summation of 10
numbers

If before running the
algorithm, sum =0

Example: Accuracy of an Algorithm

Roune i

sum = O summation of
0+1
foriin numbers:
sum = sum-+i

[1,2,3,4,5,6,7,8,9,10]

If before running loop Then after running
1, sum =0 loop 1, sum=1

Example: Accuracy of an Algorithm

ROUREC 2

sum = O summation of
O+1+2
foriin numbers:
sum = sum-+i

[1,2,3,4,5,6,7,8,9,10]

If before running loop Then after running
2, sum =1 loop 2, sum =3

Example: Accuracy of an Algorithm

Roune 33

sum = O summation of
o O0+1+2+3
foriin numbers:
sum = sum-+i

[1,2,3,4,5,6,7,8,9,10]

If before running loop Then after running
3, sum =3 loop 3, sum =6

Example: Accuracy of an Algorithm

Rounel 10

sum = O summation of
0+1 + 2+3+4+5

foriin numbers: +6+7+8+9+10
sum = sum-+i

[1,2,3,4,5,6,7,8,9,10]

If before running loop Then after running
10, sum =45 loop 10, sum =55

Before running loop N, we have sum value of loop N-1
/

What is a Loop Invariant?

* An loop invariant is a formal statement of a
properties of variables in an algorithm which
holds true just before and after each iteration
of running the loop.

e Similar to mathematical induction where the
initialization is proving a base case and the
maintenance is proving an inductive step.

proofs of a Loop Invariant

* |Initialization
— |t is true prior to the first iteration of the loop.

* Maintenance

— If it Is true before an iteration of the loop, it
remains true before the next iteration.

e Termination

— When the loop terminates, the invariant gives a
useful property that helps shows that the
algorithm is correct.

Example loop invariants with
summation

sum =0
for i=1 to length[A]
sum = sum + Ali]

What is a loop invariant for this code?

A property that will be true before and after
running the loop.

A loop invariant is i—1

before running loop i, sum = Z Alm]

m=1

Example loop invariants with
Let us check SummatIOn

with some

sample input

Initialization:
Ati=1,m=1-1=0

Input =1[9,5,7,4,2]

hence, sum=0
holds True!!!

sum =0
for i=1 to length[A]
sum = sum + Ali]

Example loop invariants with

summation
Maintenance: Input =1[9,5,7,4,2]

If sum (before) = sum from 1 to i-1 then

sum(before next iter) = sum from 1 to i-1 +1 Sum(before)
sumtoi-1

sum=0

1 0+9
for i=1 to length[A] KB L o
3 14 0+9+5+7
sum =sum + A[I] 4 21 0+9+5+7+4
5 25 0+9+5+7+4+2
6 27 stop

Termination: sum from 1 to n

sum = 0+9+5+7+4+2
Holds True!!

Example loop invariants with summation

sum=0
L] for i=1 to length[A]

sum =sum + Ali]

A loop invariant is 1
before running at loop i, syum = Z Alm
m=1

Initialization: at loop 1, sum =0 (True!!)
Maintenance:

If at before running loop i, sum = A[1]+A[2]+...+A[i-1]

then after runningloop i, sum = A[1]+A[2]+...+A[i-1]+A][i]

Hence, before running loop i+1, sum = A[1]+A[2]+...+A[i-1]+A[i] (True!!)
Termination:

Goal(output of program) => SUn = ZA

i=1

At start of running at loop n+1, sum = A[1]+A[2]+...+A[n-1]+A[n] (True!!)

Exercise: Loop variant with Max Array

* Write a pseudo code of an algorithm for
finding a maximal number in an array of size n.

* Write a proof of the correctness of the
algorithm using loop invariants.

max = A[1]
for i=2 to length[A]
if max < A[i]

max = Ali]

Solution: Loop variant with Max Array

max = A[1]
for i=2 to length[A]
if max < Al[i]
max = Ali]
Loop Invariant = Before running loop i, max is the largest number from A[1] to A[i-1]

Initialization:
Before running first loop where i=2 , max = A[1] which is the maximum number of A[2-1] (True!!)

Maintenance:
If before running loop i, max is the largest number among A[1] to A[i-1]
then after running loop i, if max < A[i] then max = A[i] which is the largest of A[1... i]
if max > A[i] then max does not change and it is the largest of A[1...i].

Hence before running loop i+1, max is is the largest number among A[1] to A[i] (True!!)

Termination: at starting of loop n+1, max is the largest number among A[1] to A[n] (True!!)

Exercise: Insertion-Sort

initialization

for j=2 to length[A]
do key =A[j]

. i=j-1
mainte-
whilei>0and A[i] > key
do A[i+1] =A[i]
i=i-1

___ Ali+1]=key

termination

A loop invariant =

all elementsin A[1...j—1] are in sorted order.

Exercise loop invariants with
Insertion-sort

for j=2 to length[A]
do key =A[j]

i=j-1

whilei>0and A[i] > key
do A[i+1] = A[i]
i=i-1

Ali+1]=key

Exercise loop invariants with
insertion-sort

A loop invariant =

all elementsin A[1...j—1] are in sorted order.

Input =1[9,5,7,4,2]

i key | Al to) lbefore) |1 | A > key | Al to3) ater
2

3
4
5

