Ch2: Loop Invariants

305233, 305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Accuracy of an Algorithm

Example: Accuracy of an Algorithm

Example: Accuracy of an Algorithm

Example

```
import math
a = float (input("Enter an angle in degrees: "))
r = a* (22/7)/180
print("%f degrees = %.2f radians and sin(%f) = %.2f and cos(%f) = %.2f" %
    (a,math.pi(a),math.sin(r),math.cos(r)))
```

```
degree = int(input("Enter an angle in degrees: "))
import math
radian = (degree*math.pi)/180
sin = math.sin(radian)
cosine = math.cos(radian)
print("sqd degrees = %.2f radians and sin(%d) = %.2f and cos(%d) = %.2f"%
    (degree, radian, degree, sin, degree, cosine))
```


Example

```
import math
pi = 3.14
angle = int(input("Enter an angle in degrees: "))
radian = angle*(pi)/180
print("夕夕\mp@code{glegrees = %.2f radian" % angle, radian)}
```

```
number = math.sin(imput("Enter an angle in degrees:"))
Ra = (number* (math.pi))/180
math.sin = number
```


Example: Accuracy of an Algorithm

Example: Accuracy of an Algorithm

Example

```
print("Enter your domino tile: ")
x = int (input ())
y = int (input ())
if }x==2 and y==9 or x==9 and y==2 :
        print("Place vour block the righ.")
        print("Place vour block the left.")
elif }x==9 or y==9
    print("Place vour block the righ.")
elif }x==2 or y==2
    print("Place vour block the left.")
else:
    print("Place vour block the tile.")
```


Example

```
x = int (input("Enter your domino title: = " ))
y = int (input("Enter your domino title: = " ))
if }\textrm{x}==2\mathrm{ and }\textrm{y}==9\mathrm{ :
    print("place your block on the left amd right")
elif }x==2\mathrm{ and }y\mathrm{ != 9:
    print("place your block on the left ")
elif x!=2 and y == 2:
        print("place your block on the left ")
elif}x==2 and y ==2
        print("place your block on the right ")
elif }x==9\mathrm{ and }y==9
        print("place your block on the left ")
elif }x==9\mathrm{ and }y==2\mathrm{ :
    print("place your block on the left amd right")
elif x!=2 and y == 9:
    print("place your block on the right ")
elif }x!=9 and y == 9:
    print("place your block on the right ")
elif x!=9 and y == 2:
    print("place your block on the left ")
elif x!=9 and y != 2:
    print("cannot place your block tite ")
elif x!=9 and y != 9:
    print("cannot place your block tite ")
elif x!=2 and y != 2:
    print("cannot place your block tite ")
elif }x!=2 and y != 9:
    print("cannot place your block tite ")
```


Example

```
print (int (input("Enter your domino tile : ")))
left = (int (input (" ")))
right = (int (input(" ")))
if left == 2 or right == 9:
    print("Place vour block on the left.")
    print("Place vour block on the right.")
elif right == 9:
    print("Place vour block on the right.")
elif left == 2:
        print("Place your block on the left.")
else:
        print("Cannot place your domino tile.")
```


Example: Accuracy of an Algorithm

Example: Accuracy of an Algorithm

ROund 3

Example: Accuracy of an Algorithm

 Round 10

What is a Loop Invariant?

- An loop invariant is a formal statement of a properties of variables in an algorithm which holds true just before and after each iteration of running the loop.
- Similar to mathematical induction where the initialization is proving a base case and the maintenance is proving an inductive step.

proofs of a Loop Invariant

- Initialization
- It is true prior to the first iteration of the loop.
- Maintenance
- If it Is true before an iteration of the loop, it remains true before the next iteration.
- Termination
- When the loop terminates, the invariant gives a useful property that helps shows that the algorithm is correct.

Example loop invariants with summation

$$
\begin{aligned}
& \text { sum }=0 \\
& \text { for } i=1 \text { to length }[A] \\
& \quad \text { sum }=\operatorname{sum}+A[i]
\end{aligned}
$$

What is a loop invariant for this code?
A property that will be true before and after running the loop.
A loop invariant is
before running loop i , sum $=\sum_{m=1}^{i-1} A[m]$

Example loop invariants with

Let us check
with some summation

sample input

Initialization:

$$
\begin{gathered}
\text { At } i=1, m=1-1=0 \\
\text { hence, sum }=0 \\
\text { holds True!!! }
\end{gathered}
$$

sum $=0$

for $\mathrm{i}=1$ to length $[\mathrm{A}]$ sum $=\operatorname{sum}+A[i]$

Example loop invariants with summation

Example loop invariants with summation

$$
\begin{aligned}
& \text { sum }=0 \\
& \text { for } i=1 \text { to length }[A] \\
& \quad \text { sum }=\operatorname{sum}+A[i]
\end{aligned}
$$

A loop invariant is
before running at loop i, sum $=\sum_{m=1}^{i-1} A[m]$
Initialization: at loop 1, sum $=0$ (True!!)
Maintenance:
If at before running loop i, sum $=A[1]+A[2]+\ldots+A[i-1]$
then after running loop i, sum $=A[1]+A[2]+\ldots+A[i-1]+A[i]$
Hence, before running loop $i+1$, sum $=A[1]+A[2]+\ldots+A[i-1]+A[i]$ (True!!)
Termination:
Goal(output of program) \Rightarrow sum $=\sum_{i=1}^{n} A[i]$
At start of running at loop $n+1$, sum $=A[1]+A[2]+\ldots+A[n-1]+A[n]$ (True!!)

Exercise: Loop variant with Max Array

- Write a pseudo code of an algorithm for finding a maximal number in an array of size n.
- Write a proof of the correctness of the algorithm using loop invariants.

$$
\begin{aligned}
& \max =A[1] \\
& \text { for } i=2 \text { to length }[A] \\
& \text { if } \max <A[i] \\
& \quad \max =A[i]
\end{aligned}
$$

Solution: Loop variant with Max Array

```
max = A[1]
for i=2 to length[A]
    if max < A[i]
    max =A[i]
```

Loop Invariant $=$ Before running loop i , max is the largest number from $\mathrm{A}[1]$ to $\mathrm{A}[\mathrm{i}-1]$

Initialization:

Before running first loop where $\mathrm{i}=2$, $\max =\mathrm{A}[1]$ which is the maximum number of $\mathrm{A}[2-1]$ (True!!)

Maintenance:

If before running loop i , max is the largest number among $\mathrm{A}[1]$ to $\mathrm{A}[\mathrm{i}-1]$
then after running loop i, if $\max <A[i]$ then $\max =A[i]$ which is the largest of $A[1 \ldots i]$ if $\max >A[i]$ then max does not change and it is the largest of $A[1 \ldots . .$.$] .$ Hence before running loop $\mathrm{i}+1$, max is is the largest number among $\mathrm{A}[1]$ to $\mathrm{A}[i]$ (True!!)

Termination: at starting of loop $\mathrm{n}+1$, max is the largest number among $\mathrm{A}[1]$ to $\mathrm{A}[\mathrm{n}]$ (True!!)

Exercise: Insertion-Sort

Exercise loop invariants with insertion-sort

$$
\begin{aligned}
& \text { for } j=2 \text { to length }[A] \\
& \text { do key }=A[j] \\
& \begin{aligned}
& i=j-1 \\
& \text { while } i>0 \text { and } A[i]>\text { key } \\
& \text { do } A[i+1]=A[i] \\
& i=i-1
\end{aligned} \\
& \begin{array}{l}
A[i+1]=k e y
\end{array}
\end{aligned}
$$

Exercise loop invariants with insertion-sort

A loop invariant = all elements in A[$1 .$. j - 1] are in sorted order.

Input = [9,5,7,4,2]

j	key	A[1 to j-1] (before)	i	A[i] > key	A[1 to j-1] (after)	A[1... n]
2						
3						
4						
5						

