Ch6: Analyzing Merge-Sort

305233, 305234
Algorithm Analysis and Design
Jiraporn Pooksook
Naresuan University

Analyze the Correctness of Algorithm

$$
\begin{aligned}
& N 1=q-p+1 \\
& \mathrm{~N} 2=\mathrm{r}-\mathrm{q} \\
& \text { Create arrays L[1..N1+1] and R[1...N2+1] } \\
& \text { For } \mathrm{i}=1 \text { to } \mathrm{N} 1 \\
& \text { do } L[i]=A[p+i-1] \\
& \text { For } \mathrm{j}=1 \text { to } \mathrm{N} 2 \\
& \text { do } R[j]=A[q+j] \\
& L[N 1+1]=\infty \\
& \mathrm{R}[\mathrm{~N} 2+1]=\infty \\
& \mathrm{i}=1 \\
& \text { j = } 1 \\
& \text { For } k=p \text { to } r \\
& \text { do if } L[i]<=R[j] \\
& \text { then } A[k]=L[i] \\
& \mathrm{i}=\mathbf{i}+\mathbf{1} \\
& \text { else } A[k]=R[j] \\
& \mathrm{j}=\mathrm{j}+1
\end{aligned}
$$

Psudocode:
merge(A,p,q,r)

Loop invariants with merge(A,p,q,r)

theoretically	loop invariant $=$ before running loop k, all elements in $A[p \ldots k-1]$ contains $k-p$ smallest number of $\mathrm{L}[1 . . \mathrm{N} 1+1], \mathrm{R}[1 \ldots \mathrm{~N} 2+1]$ are in sorted order and, $\mathrm{L}[\mathrm{i}], \mathrm{R}[j]$ are the smallest number of their arrays that have never been copied into A.

Initialization:
Before running loop $\mathrm{k}, \mathrm{k}=\mathrm{p}$ then all elements in $=\mathrm{A}[\mathrm{p} . . . \mathrm{p}-1]$ is empty.
Hence A[p...k-1] are sorted.
And $i=j=1$ hence, $L[i]$ and $R[j]$ are the smallest number. (True!!)

Maintenance:

If before running loop k, all elements in = A[p...k-1] contains k-p smallest number of $\mathrm{L}[1 . . \mathrm{N} 1+1], \mathrm{R}[1 . . . \mathrm{N} 2+1]$ are in sorted order.
then after running loop k, if $L[i]<=R[j]$ then $L[i]$ is the smallest and will be copied to position k and $A[p . . . k-1]$ are sorted.
Hence $A[p . . . k$] will contains $k-p+1$ smallest number.
if $L[i]>R[j]$ then $R[j]$ is the smallest and will be copied to position k
and $A[p . . . k-1]$ are sorted.
Hence $A[p . . . k]$ will contains $k-p+1$ smallest number.
Hence before running loop $\mathrm{k}+1, \mathrm{~A}[\mathrm{p} . . \mathrm{k}$] are sorted. (True!!)

Loop invariants with merge(A,p,q,r)

| theoreticallyloop invariant $=$
 before running loop k, all elements in $A[p \ldots k-1]$ contains $k-p$
 smallest number of $L[1 . . N 1+1], R[1 \ldots N 2+1]$ are in sorted order and,
 $L[i], R[j]$ are the smallest number of their arrays that have never
 been copied into A. |
| :---: | :---: |

Maintenance:

If before running loop k, all elements in = $\mathrm{A}[\mathrm{p} . . \mathrm{k}-1]$ contains $k-p$ smallest number of $\mathrm{L}[1 . . \mathrm{N} 1+1], \mathrm{R}[1 . . . \mathrm{N} 2+1]$ are in sorted order.
then after running loop k, if $L[i]<=R[j]$ then $L[i]$ is the smallest and will be copied to position k and $A[p . . . k-1]$ are sorted.
Hence $A[p . . . k$] will contains $k-p+1$ smallest number.
if $L[i]>R[j]$ then $R[j]$ is the smallest and will be copied to position k and $A[p . . . k-1]$ are sorted.
Hence $A[p . . . k]$ will contains $k-p+1$ smallest number.
Hence before running loop k+1, A[p...k] are sorted. (True!!)
Termination: at starting of loop $\mathrm{k}+1, \mathrm{~A}[\mathrm{p} . . \mathrm{k}]$ contain $\mathrm{k}+1-\mathrm{p}$ smallest number of $\mathrm{L}[1 . . \mathrm{N} 1+1], \mathrm{R}[1 . . . \mathrm{N} 2+1]$ are in sorted order. (True!!)

THE RUNNING TIME OF ALGORITHM

Analyze the Running time of merge-

 sort$$
\begin{aligned}
& \text { If } p<r \\
& \text { then } q=L(p+r) / 2 \\
& \quad \operatorname{merge}-\operatorname{sort}(A, p, q) \\
& \\
& \quad \operatorname{merge-sort}(A, q+1, r) \\
& \\
& \operatorname{merge}(A, p, q, r)
\end{aligned}
$$

Divide
$\mathrm{T} 1=\mathrm{t}_{1}{ }^{*} 1$

Analyze the Running time of merge-

Analyze the Running time of mergesort

