
Normal Forms

Suradet Jitprapaikulsarn

First semester 2005

We can transform any context-free grammar (CFG) to Greibach normal
forms which ensure that left recursion, direct or indirect, cannot occur. The
steps are as follows:

1. Eliminating the recursion of the start symbol.

2. Eliminating the null varialbes.

3. Eliminating the chain rules.

4. Eliminating the useless symbols.

5. Transform the grammar to a Chomsky normal form.

6. Transfrom the modifed grammar to a Greibach normal form.

The resulting grammars (in a Greibach normal form) ensure that the top-
down parsers will terminate.

1 Eliminating a recursion of the start symbol

The start symbol has a recursion if there is a derivation of the form S ∗⇒ uSv .
We can eliminate this recursive derivation by

1. designating a new start symbol S′.

2. adding a new rule S′ → S to the rules of the grammar.

Example 1 G = (N,T, P, S) where
N = {S, A, B, C}
T = {a, b, c, λ}
P : S → AB |AC

A → aS |λ
B → bS | bB
C → cC |λ

We can see that the start symbol has a recursive derivation which can be
removed by introducing a new start symbol S′ and adding a new rule S′ → S.
Hence, the new equivalent grammar is

1

G′ = (N, T, P ′, S′) where
N = {S′, S,A, B, C}
T = {a, b, c, λ}
P ′ : S′ → S

S → AB |AC
A → aS |λ
B → bS | bB
C → cC |λ

2 Eliminating lambda rules

A variable that can derive the null string is called nullable. A grammar wihtout
nullable variables is called noncontracting. A grammar without nullable vari-
ables except S ⇒ λ is called essentially noncontracing. We can eliminate
the nullable variables by

1. identifying the nullable variables

2. replacing the rules that derive the null string. i.e. replacing

A → λ and B → uAv

with

B → uAv and B → uv

2.1 Algorithm for identifying nullable variables

input: context-free grammar G = (N, T, P, S)
NULL := {A |A → λ ∈ P}
repeat

PREV := NULL
for each variable A ∈ N do

if there is an A rule A → w and w ∈ PREV then
NULL := NULL ∪{A}

until NULL = PREV

After applying eliminating the lambda rules, the grammar is now essen-
tially noncontracting .

3 Eliminating the chain rules

We can eliminate the chain rules by

1. identifying the chain rules

2

2. replacing the chain rules. i.e. replacing

A → B and B → w

with

A → w and B → w

3.1 Algorithm for identifying chain rules

input: essentially noncontracing context-free grammar G = (N,T, P, S)
CHAIN(A) := { A }
PREV := ∅
repeat

NEW := CHAIN(A) − PREV
PREV := CHAIN(A)
for each variable B ∈ NEW do

for each rule B → C do
CHAIN(A) := CHAIN(A) ∪ { C }

until CHAIN(A) = PREV

4 Eliminating the useless symbols

For a variable to be useful, two conditions must be satisfied:

1. The variable must occur in a sential form of the grammar; that is it must
occur in a string derivable from S.

2. There must be a derivation of a terminal string from the variable.

4.1 Algorithm for identify variables that derive terminal
strings

input: context-free grammar G = (N, T, P, S)
TERM := { A | there is a rule A → w ∈ P with w ∈ T* }
repeat

PREV := TERM
for each variable A ∈ N do

if there is an A rule A → w and w ∈ (PREV ∪T)* then
TERM := TERM ∪ { A }

until PREV = TERM

We then remove all the rules containing variables not in the set TERM.

3

4.2 Algorithm for identify reachable variables

input: context-free grammar G = (N, T, P, S)
REACH := S
PREV := ∅
repeat

NEW := REACH − PREV
PREV := REACH
for each variable A ∈ NEW do

for each rule A → w do
add all variables in w to REACH

until REACH = PREV

By eliminating all variables not in REACH, we obtain a grammar that con-
tains no recursive start symbol, no lambda rule except S → λ, and no useless
variables.

5 Chomsky Normal Form

A context-free grammar G = (N, T, P, S) is in Chomsky normal form if each
rule has one of the following forms:

1. A → BC

2. A → a

3. S → λ

where B, C ∈ N − {S}.

The derivation tree associated with a derivation in a Chomsky normal form
grammar is a binary tree.

Suppose that G has the following preperties:

i. The start symbol of G is non-recursive.

ii. G does not contain lambda rules other than S → λ.

iii. G does not contain chain rules.

iv. G does not contain useless symbols

The rules satisfying these conditions has one of the following forms:

1. S → λ

2. A → a

3. A → w where w ∈ ((T ∪N)− {S})* and |w| > 1

4

We need only to change the rules with the last form:

1. Remove the terminal from the right-hand side.

2. Break the rules with length greater than 1 into a sequence of rules, each of
whose right-hand side consists of two variables.

6 Removal of direct left recursion

We can remove the direct left recursion by replacing
A → Ax and A → y
with
A → yB, B → xB, and B → λ

7 Greibach Normal Form

A context-free grammar G = (N,T, P, S) is in Greibach normal form if each
rule has one of the following forms:

1. A → aA1A2...An

2. A → a

3. S → λ

where a ∈ T and Ai ∈ N − {S} for i = 1, 2, ..., n.

The conversion of a Chomsky normal form grammar to Greibach normal
form uses two rule transformation techniques:

References

[1] T. Pittman and J. Peters, The Art of Compiler Design. Prentice-Hall, 1992.

[2] T. A. Sudkamp, Languages and Machines. Addison-Wesley, 1997.

5

