Normal Forms

Suradet Jitprapaikulsarn

First semester 2005

We can transform any context-free grammar (CFG) to Greibach normal
forms which ensure that left recursion, direct or indirect, cannot occur. The
steps are as follows:

1. Eliminating the recursion of the start symbol.
2. Eliminating the null varialbes.

Eliminating the chain rules.

Eliminating the useless symbols.

Transform the grammar to a Chomsky normal form.

SO A ol

Transfrom the modifed grammar to a Greibach normal form.

The resulting grammars (in a Greibach normal form) ensure that the top-
down parsers will terminate.

1 Eliminating a recursion of the start symbol

The start symbol has a recursion if there is a derivation of the form S = uSv.
We can eliminate this recursive derivation by

1. designating a new start symbol S’.

2. adding a new rule S’ — S to the rules of the grammar.

Example 1 G = (N, T, P,S) where
N =1{S,A, B,C}

T ={a,b,c,\}
P:S— AB|AC
A—aS|A
B —bS|bB
C—cC|A

We can see that the start symbol has a recursive derivation which can be
removed by introducing a new start symbol S’ and adding a new rule S’ — S.
Hence, the new equivalent grammar is

G' = (N,T, P, S") where
N =1{8",5,A,B,C}
T ={a,b,c, \}
P .5 -85
S — AB|AC
A—aS|A
B — bS|bB
C—cC|A

2 Eliminating lambda rules

A variable that can derive the null string is called nullable. A grammar wihtout
nullable variables is called noncontracting. A grammar without nullable vari-
ables except S = A is called essentially noncontracing. We can eliminate
the nullable variables by

1. identifying the nullable variables

2. replacing the rules that derive the null string. i.e. replacing
A — Xand B — uAv
with

B — uAv and B — wv

2.1 Algorithm for identifying nullable variables

input: context-free grammar G = (N, T, P, S)

NULL:={A|A— X e P}
repeat

PREV := NULL

for each variable A € N do

if there is an A rule A — w and w € PREV then
NULL := NULL U{A}

until NULL = PREV

After applying eliminating the lambda rules, the grammar is now essen-
tially noncontracting.

3 Eliminating the chain rules

We can eliminate the chain rules by

1. identifying the chain rules

2. replacing the chain rules. i.e. replacing
A— Band B—w
with

A—wand B—w

3.1 Algorithm for identifying chain rules

input: essentially noncontracing context-free grammar G = (N, T, P, S)

CHAIN(A) :={ A}
PREV := 0
repeat

NEW := CHAIN(4) — PREV

PREV := CHAIN(A)

for each variable B € NEW do

for each rule B — C' do
CHAIN(A) := CHAIN(A) U { C}

until CHAIN(A) = PREV

4 Eliminating the useless symbols

For a variable to be useful, two conditions must be satisfied:

1. The variable must occur in a sential form of the grammar; that is it must
occur in a string derivable from S.

2. There must be a derivation of a terminal string from the variable.

4.1 Algorithm for identify variables that derive terminal
strings

input: context-free grammar G = (N, T, P, S)

TERM := { A | thereis arule A - w € P with w € T* }
repeat

PREV := TERM

for each variable A € N do

if there is an A rule A — w and w € (PREV UT)* then
TERM := TERM U { A }

until PREV = TERM

We then remove all the rules containing variables not in the set TERM.

4.2 Algorithm for identify reachable variables

input: context-free grammar G = (N, T, P, S)

REACH = S
PREV = ()
repeat

NEW := REACH — PREV

PREV := REACH

for each variable A € NEW do

for each rule A — w do
add all variables in w to REACH

until REACH = PREV

By eliminating all variables not in REACH, we obtain a grammar that con-
tains no recursive start symbol, no lambda rule except S — A, and no useless
variables.

5 Chomsky Normal Form

A context-free grammar G = (N, T, P, S) is in Chomsky normal form if each
rule has one of the following forms:

1. A— BC
2. A—a
3.5 =\

where B,C € N — {S}.

The derivation tree associated with a derivation in a Chomsky normal form
grammar is a binary tree.

Suppose that G has the following preperties:
i. The start symbol of G is non-recursive.
ii. G does not contain lambda rules other than S — A.
iii. G does not contain chain rules.
iv. G does not contain useless symbols
The rules satisfying these conditions has one of the following forms:
1. S— A
2. A—a
3. A— wwherew e (TUN) —{S})* and |w| > 1

We need only to change the rules with the last form:
1. Remove the terminal from the right-hand side.

2. Break the rules with length greater than 1 into a sequence of rules, each of
whose right-hand side consists of two variables.

6 Removal of direct left recursion

We can remove the direct left recursion by replacing
A— Arand A — vy
with
A—yB,B—xB,and B —)\

7 Greibach Normal Form

A context-free grammar G = (N, T, P, S) is in Greibach normal form if each
rule has one of the following forms:

1. A— CLAlAQ...An
2. A—a
3.5 —= A

where a € T and A; € N — {S} fori=1,2,...,n.

The conversion of a Chomsky normal form grammar to Greibach normal
form uses two rule transformation techniques:

References
[1] T. Pittman and J. Peters, The Art of Compiler Design. Prentice-Hall, 1992.

[2] T. A. Sudkamp, Languages and Machines. Addison-Wesley, 1997.

