
1

Building the Analysis Model 4

Suradet Jitprapaikulsarn

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s
Approach, 6th Edition, McGraw-Hill, 2005

Class-based Modeling

• Identify analysis classes by examining the

problem statement

• Use a “grammatical parse” to isolate

potential classes

• Identify the attributes of each class

• Identify operations that manipulate the

attributes

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Analysis Classes

• External entities (printer, user, sensor)

• Things (report, display, signal)

• Occurrences or events (alarm, telephone call)

• Roles (manager, clerk)

• Organization units (Accounting Dept, R & D)

• Places (building, manufacturing floor)

• Structures (employee records)

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

2

needed services

multiple attributes

common attributes

common operations

essential requirements

retained information

Selecting Classes—Criteria

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

System

program()

display()

reset()

query()

modify()

call()

systemID

verificationPhoneNumber

systemStatus

delayTime

telephoneNumber

masterPassword

temporaryPassword

numberTries

Class name

attributes

operations

Class Diagram

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

FloorPlan

determineType ()
positionFloorplan

scale()
change color()

type
name
outsideDimensions

Camera

determineType ()

translateLocat ion ()

displayID()

displayView()

displayZoom()

type

ID

location

fieldView

panAngle

ZoomSetting

WallSegment

type

startCoordinates

stopCoordinates

nextWallSement

determineType ()

draw()

Window

type

startCoordinates

stopCoordinates

nextWindow

determineType ()

draw()

is placed wit hin

Wall

type

wallDimensions

determineType ()
computeDimensions ()

Door

type

startCoordinates

stopCoordinates

nextDoor

determineType ()

draw()

is part of

is used to buildis used t o build

is used to build

Derived from Roger S. Pressman, Software Engineering:

A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Class Diagram

3

CRC Modeling

• Analysis classes have “responsibilities”
– Responsibilities are the attributes and operations

encapsulated by the class

• Analysis classes collaborate with one another
– Collaborators are those classes that are required to

provide a class with the information needed to
complete a responsibility.

– In general, a collaboration implies either a request for
information or a request for some action.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class: FloorPlan

Description:

Responsibility: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

Wall

Camera

CRC Modeling

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Class Types

• Entity classes, also called model or business classes, are extracted directly
from the statement of the problem (e.g., FloorPlan and Sensor).

• Boundary classes are used to create the interface (e.g., interactive screen or
printed reports) that the user sees and interacts with as the software is used.

• Controller classes manage a “unit of work” [UML03] from start to finish.
That is, controller classes can be designed to manage

– the creation or update of entity objects;

– the instantiation of boundary objects as they obtain information from entity
objects;

– complex communication between sets of objects;

– validation of data communicated between objects or between the user and the
application.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

4

Responsibilities

• System intelligence should be distributed across
classes to best address the needs of the problem

• Each responsibility should be stated as generally as
possible

• Information and the behavior related to it should
reside within the same class

• Information about one thing should be localized with
a single class, not distributed across multiple classes

• Responsibilities should be shared among related
classes, when appropriate

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Collaborations

• Classes fulfill their responsibilities in one of two ways:
– A class can use its own operations to manipulate its own

attributes, thereby fulfilling a particular responsibility, or

– a class can collaborate with other classes.

• Collaborations identify relationships between classes

• Collaborations are identified by determining whether a
class can fulfill each responsibility itself

• three different generic relationships between classes
[WIR90]:
– the is-part-of relationship

– the has-knowledge-of relationship

– the depends-upon relationship

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Composite Aggregate Class

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

5

Reviews of CRC model

• All participants in the review (of the CRC model) are given a subset
of the CRC model index cards.
– Cards that collaborate should be separated (i.e., no reviewer should

have two cards that collaborate).
• All use-case scenarios (and corresponding use-case diagrams)

should be organized into categories.
• The review leader reads the use-case deliberately.

– As the review leader comes to a named object, she passes a token to
the person holding the corresponding class index card.

• When the token is passed, the holder of the class card is asked to
describe the responsibilities noted on the card.
– The group determines whether one (or more) of the responsibilities

satisfies the use-case requirement.
• If the responsibilities and collaborations noted on the index cards

cannot accommodate the use-case, modifications are made to the
cards.
– This may include the definition of new classes (and corresponding CRC

index cards) or the specification of new or revised responsibilities or
collaborations on existing cards.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Associations and Dependencies

• Two analysis classes are often related to one

another in some fashion

– In UML these relationships are called associations

– Associations can be refined by indicating multiplicity

(the term cardinality is used in data modeling

• In many instances, a client-server relationship

exists between two analysis classes.

– In such cases, a client-class depends on the server-

class in some way and a dependency relationship is

established

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Multiplicity

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

WallSegment Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

6

Dependency

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

CameraDisplayWindow

{password}

<<access>>

Analysis Package

• Various elements of the analysis model (e.g.,
use-cases, analysis classes) are categorized in
a manner that packages them as a grouping

• The plus sign preceding the analysis class name
in each package indicates that the classes have
public visibility and are therefore accessible from
other packages.

• Other symbols can precede an element within a
package. A minus sign indicates that an element
is hidden from all other packages and a #
symbol indicates that an element is accessible
only to packages contained within a given
package.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Analysis Package

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

En v ir o n m e n t

+T ree

+Landscape

+Road
+W all

+Bridge

+Building

+VisualEffect
+Scene

Ch arac t e rs

+ Player

+ Protagonist

+ Antagonis t
+Support ingRole

Ru le sOf Th e Gam e

+RulesOfM ovem ent

+Cons traintsOnAct ion

p ackag e n am e

7

Behavioral Modeling

• The behavioral model indicates how software
will respond to external events or stimuli. To
create the model, the analyst must perform the
following steps:

• Evaluate all use-cases to fully understand the sequence of
interaction within the system.

• Identify events that drive the interaction sequence and
understand how these events relate to specific objects.

• Create a sequence for each use-case.

• Build a state diagram for the system.

• Review the behavioral model to verify accuracy and
consistency.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

State Representation

• In the context of behavioral modeling, two
different characterizations of states must be
considered:
– the state of each class as the system performs its

function and
– the state of the system as observed from the outside

as the system performs its function

• The state of a class takes on both passive and
active characteristics [CHA93].
– A passive state is simply the current status of all of

an object’s attributes.
– The active state of an object indicates the current

status of the object as it undergoes a continuing
transformation or processing.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

State Diagram for the ControlPanel Class

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

reading

locked

select ing

password

ent ered

comparing

password = incorrect

& numberOf Tries < maxTries

password = correct

act iv at ion successful

key hit

do: validatePassw ord

numberOfTries > maxTries

t imer < lockedTime

t imer > lockedTime

8

The State of a System

• state—a set of observable circum-stances
that characterizes the behavior of a
system at a given time

• state transition—the movement from one
state to another

• event—an occurrence that causes the
system to exhibit some predictable form of
behavior

• action—process that occurs as a
consequence of making a transition

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Behavioral Modeling

• make a list of the different states of a
system (How does the system behave?)

• indicate how the system makes a
transition from one state to another (How
does the system change state?)
– indicate event

– indicate action

• draw a state diagram or a sequence
diagram

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Sequence Diagram

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

ho meow ner co nt rol pan el sen so rssyst em sensors

syst em

read y

read in g

requ est loo ku p
co mp arin g

resu lt

p asswo rd ent ered

pass word = c orrect

req uest act ivat ion

act ivat ion su ccessfu l

lo cked

num berOfTries > m axTries

select ing

t imer > lo ckedTime
A

A

Figure 8 .2 7 Sequence diagram (par t ial) f or Saf eHome securit y f unct ion

act ivat io n su ccessfu l

9

Writing the Software Specification

Everyone knew exactly
what had to be done
until someone wrote it
down!

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Specification Guideline
use a layered format that provides increasing detail
as the "layers" deepen

use consistent graphical notation and apply textual
terms consistently (stay away from aliases)

be sure to define all acronyms

be sure to include a table of contents; ideally,
include an index and/or a glossary

write in a simple, unambiguous style (see "editing
suggestions" on the following pages)

always put yourself in the reader's position, "Would
I be able to understand this if I wasn't intimately
familiar with the system?"

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

Specification Guideline

Be on the lookout for persuasive connectors, ask why?
 keys: certainly, therefore, clearly, obviously, it follows that ...

Watch out for vague terms
 keys: some, sometimes, often, usually,ordinarily, most, mostly ...

When lists are given, but not completed, be sure all items are understood
 keys: etc., and so forth, and so on, such as

Be sure stated ranges don't contain unstated assumptions
 e.g., Valid codes range from 10 to 100. Integer? Real? Hex?

Beware of vague verbs such as handled, rejected, processed, ...

Beware "passive voice" statements
 e.g., The parameters are initialized. By what?

Beware "dangling" pronouns
 e.g., The I/O module communicated with the data validation module and
its contol flag is set. Whose control flag?

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

10

Specification Guideline

When a term is explicitly defined in one place, try
substituting the definition forother occurrences of the term

When a structure is described in words, draw a picture

When a structure is described with a picture, try to redraw
the picture to emphasize different elements of the structure

When symbolic equations are used, try expressing their
meaning in words

When a calculation is specified, work at least two
examples

Look for statements that imply certainty, then ask for proof
 keys; always, every, all, none, never

Search behind certainty statements—be sure restrictions
or limitations are realistic

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition, McGraw-Hill, 2005

