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Functional Independence

COHESION - the degree to which a
module performs one and only one
function.

COUPLING - the degree to which a
module is "connected" to other
modules in the system.

Derived from Roger S. Pressman, Software Engineering: A Practiioner's Approach, 6% Edition, McGraw-Hil, 2005
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Law of Demeter

Discovered at Northeastern University in
1987

“Only talk to your friends” motto

A subsystem should have only limited
knowledge of other subsystems
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Refinement

walk to door;
reach for knob;
~

open door; == repeat until door opens
turn knob clockwise;
walk through; if knob doesn't turn, then
close door. take key out;
find correct key;
insert in lock;
endif
pull/push door
move out of way;
end repeat

Derived from Roger S. Pressman, Software Engineering: A Practiioner's Approach, 6% Edition, McGraw-Hil, 2005
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Refactoring

The process of changing a software system
in such a way that it does not alter the
external behavior of the code yet improves
its internal structure

Fowler, M. 1999
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Derived from Roger S. Pressman, Software Engineering: A Practiioner's Approach, 67 Edition, McGraw-Hil, 2005
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Design Model Elements

Data elements
— Data model --> data structures
— Data model --> database architecture
Architectural elements
— Application domain
— Analysis classes, their relationships, collaborations and behaviors are
transformed into design realizations
— Patterns and “styles” (Chapter 10)
Interface elements
— User interface (Ul)
— External interfaces to other systems, devices, networks or other producers or
consumers of information
— Internal interfaces between various design components.
Component elements
Deployment elements
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Designing Classes

» Well-formed design class
— Complete and sufficient
— Primitiveness
— High cohesion
— Low coupling
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A Class Design Methodology

+ Identifying classes

« Identifying associations and attributes

+ Identifying generalizations and interfaces
* Allocating responsibilities to classes

+ Identifying operations

 Refine the model using design patterns
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Identifying Classes

» Refine the analysis classes — Business domain
classes

» Create a new set of design classes that support
the solution

— All abstractions necessary for HCl — User interface
class

— Lower-level business abstractions — Process classes
— Data stores — Persistent classes
— System management and control — System classes
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Identifying associations and
attributes

+ Start from a most central and important set of classes
« Determine the relationships to other classes
— possess
— control
— is connected to
— is related to
— is a part of/has as parts
— is a member of/has as members
« Avoid using associations to represent actions
« Promote similar attributes to classes
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Identifying generalizations and
interfaces
» Bottom-up: groups together similar
classes, creating a new superclass

* Top-down: divides up a complex class,
creating new subclasses
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Allocating responsibilities to
classes

» Setting/Getting

» Creating and Initializing/Destroying
» Storing and Retrieving

» Adding/Deleting

» Transforming and Transmitting

» Computing

» Navigating and Searching

» Others

Identifying Operations

» Realize responsibilities with operations

» There can be multiple operations for one
responsibility but one will be in charge

Design Modeling Principles

Traceability

Think about architecture

Pay equal attention to data and operation
Watch out the interfaces

Tailor Ul to users

Loose coupling, high cohesion

Make the model easy to comprehend
Iterative design

Make it simple but not simpler
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