Design Engineering 2

Suradet Jitprapaikulsarn

Functional Independence

COHESION - the degree to which a
module performs one and only one
function.

COUPLING - the degree to which a
module is "connected" to other
modules in the system.

Derived from Roger S. Pressman, Software Engineering: A Practiioner's Approach, 6% Edition, McGraw-Hil, 2005

mamsnunit o Imsimn wade avudvinilao gay dlssInama

mnn

Law of Demeter

Discovered at Northeastern University in
1987

“Only talk to your friends” motto

A subsystem should have only limited
knowledge of other subsystems

Mot « Tnsfinn waae wowivingTao gaay Sadssngama

Refinement

walk to door;
reach for knob;
~

open door; == repeat until door opens
turn knob clockwise;
walk through; if knob doesn't turn, then
close door. take key out;
find correct key;
insert in lock;
endif
pull/push door
move out of way;
end repeat

Derived from Roger S. Pressman, Software Engineering: A Practiioner's Approach, 6% Edition, McGraw-Hil, 2005

st « fmsfnn wace wowdndniTag qainy S Ingama 4

Refactoring

The process of changing a software system
in such a way that it does not alter the
external behavior of the code yet improves
its internal structure

Fowler, M. 1999

mamsdnuTi o Tmafinn wade wudvinilag qiay SmlszInnama 5
high
analysis modg|
class dagrams
< anaiysis packages — R Requirements
S | comes (oo oo dagrams st pockages constraints
2| ot dmrams | sty s CRCmodes interoperabity
© a flow dagrams swimane diagrams collaboration dagrarms
E control-low diagrams | cojaporation diagrams | dataflow diagrams. targets and
= processing raralives state sagramms controLflow dagrams configuration
e secquence dagrams processing naratives
5 QI S state dagrams
g [====~baoo__ | soauencedapans
I3 B P,
T | oo s rotcatns A
£ subsystems i S
& colaboration dagrams | techrical interface componentdiagrams | ons
E] cesign designclasses Biveiioe
Navigation design activity dagrams
Guidesign sequence dagrams colisbaration dgrams
" componen diagrams
design mode| design casses
retinomentsv: activity dagrams
refinements to component dagrams | S°ence dagrams
cosign cass realizations| desion classes
subsystems
low actvity dgrams
collaboration diagrams Cequence dagams sotoymentdsgams
architecture interface component-level deployment-level
elements elements elements elements

process dimension

Derived from Roger S. Pressman, Software Engineering: A Practiioner's Approach, 67 Edition, McGraw-Hil, 2005

mamsingR & Insion waee wouivitniTao gy Saszlngama 6

Design Model Elements

Data elements
— Data model --> data structures
— Data model --> database architecture
Architectural elements
— Application domain
— Analysis classes, their relationships, collaborations and behaviors are
transformed into design realizations
— Patterns and “styles” (Chapter 10)
Interface elements
— User interface (Ul)
— External interfaces to other systems, devices, networks or other producers or
consumers of information
— Internal interfaces between various design components.
Component elements
Deployment elements

mamsininit o Imsinn waae avudvinilao gay sz Ingama

Designing Classes

» Well-formed design class
— Complete and sufficient
— Primitiveness
— High cohesion
— Low coupling

mamsnunit o Imsimn wade avudvinilao gay dlssInama

A Class Design Methodology

+ Identifying classes

« Identifying associations and attributes

+ Identifying generalizations and interfaces
* Allocating responsibilities to classes

+ Identifying operations

 Refine the model using design patterns

wuiviniTag qany

Identifying Classes

» Refine the analysis classes — Business domain
classes

» Create a new set of design classes that support
the solution

— All abstractions necessary for HCl — User interface
class

— Lower-level business abstractions — Process classes
— Data stores — Persistent classes
— System management and control — System classes

st « fmsfnn wace wowdndniTag qainy S Ingama 10

Identifying associations and
attributes

+ Start from a most central and important set of classes
« Determine the relationships to other classes
— possess
— control
— is connected to
— is related to
— is a part of/has as parts
— is a member of/has as members
« Avoid using associations to represent actions
« Promote similar attributes to classes

st « msfnn wace wowdndniTag qainy S Tngama 1

Identifying generalizations and
interfaces
» Bottom-up: groups together similar
classes, creating a new superclass

* Top-down: divides up a complex class,
creating new subclasses

wowdviniTan gony

Allocating responsibilities to
classes

» Setting/Getting

» Creating and Initializing/Destroying
» Storing and Retrieving

» Adding/Deleting

» Transforming and Transmitting

» Computing

» Navigating and Searching

» Others

Identifying Operations

» Realize responsibilities with operations

» There can be multiple operations for one
responsibility but one will be in charge

Design Modeling Principles

Traceability

Think about architecture

Pay equal attention to data and operation
Watch out the interfaces

Tailor Ul to users

Loose coupling, high cohesion

Make the model easy to comprehend
Iterative design

Make it simple but not simpler

CoNORBN =

