
1

Testing Strategy

Suradet Jitprapaikulsarn

Derived from Roger S. Pressman, Software
Engineering: A Practitioner’s Approach, 6th Edition,
McGraw-Hill 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 2

Verification & Validation

• formal technical reviews

• quality and configuration audits

• performance monitoring

• simulation

• feasibility study

• documentation review

• database review

• algorithm analysis

• development testing

• usability testing

• qualification testing

• installation testing

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 3

Software Testing

Testing is the process of exercising a

program with the specific intent of finding

errors prior to delivery to the end user.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

2

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 4

What Testing Shows
errors

requirements conformance

performance

an indication
of quality

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 5

Who Tests the

Software?

developer independent tester

Understands the system

but, will test "gently"

and, is driven by "delivery"

Must learn about the system,

but, will attempt to break it

and, is driven by quality

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 6

Testing Strategy

• Testing planning

• Test case design

• Test execution

• Resultant data collection and evaluation

3

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 7

Testing Strategy

unit test integration
test

validation
test

system
test

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 8

Testing Strategy

• Quantify requirements

• Start from small to large

• Explicitly define testing objectives

• Know the users

• Emphasize rapid testing

• Build self-diagnose software that
accommodating test automation

• Testing as last resource

• Review test strategy and test cases

• Continuous improvement

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 9

Unit Testing

module
to be
tested

test cases

results

software
engineer

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

4

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 10

Unit Testing

interface

local data structures

boundary conditions

independent paths

error handling paths

module
to be
tested

test cases

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 11

Errors commonly found

• Erroneous computation

• Incorrect comparison

• Improper control flow

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 12

Errors computation

1. operation precedence

2. mixed mode operations

3. incorrect initialization

4. precision inaccuracy

5. incorrect symbolic representation

5

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 13

Incorrect Comparison

1. Comparison of different data types

2. Incorrect logical operators or precedence

3. Expectation of equality

4. Incorrect comparison of variables

5. Improper or nonexistent loop termination

6. Failure to exit when divergent iteration is
encountered

7. Improperly modified loop variables

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 14

Error Handling Check

1. Unintelligible error description

2. Mismatched note

3. External intervention

4. Incorrect handling of exception

5. Insufficient data to identify error spots

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 15

Unit Test Environment

Module

stub stub

driver

RESULTS

interface

local data structures

boundary conditions

independent paths

error handling paths

test cases

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

6

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 16

Integration Testing Strategies

Options:

• the “big bang” approach

• an incremental construction strategy

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 17

Top Down Integration

top module is tested with
stubs

stubs are replaced one at
a time, "depth first"

as new modules are integrated,
some subset of tests is re-run

A

B

C

D E

F G

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 18

Bottom-Up Integration

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated

A

B

C

D E

F G

cluster

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

7

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 19

Sandwich Testing

Top modules are

tested with stubs

Worker modules are grouped into
builds and integrated

A

B

C

D E

F G

cluster

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 20

Regression Testing

• Re-execution of some subset of tests after

changes.

• Reducing the side effects

• 3 different class of test cases

– A representative test

– Side-effect test

– Focus test

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 21

Smoke Testing

• Integration test while software is being

developed

• Pacing mechanism

• Activities

– Daily build

– Show stop tests

– Smoke test daily

8

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 22

High-Order Testing

• Validation testing
– Focus is on software requirements

• System testing
– Focus is on system integration

• Alpha/Beta testing
– Focus is on customer usage

• Recovery testing
– forces the software to fail in a variety of ways and verifies that recovery is
properly performed

• Security testing
– verifies that protection mechanisms built into a system will, in fact, protect it from
improper penetration

• Stress testing
– executes a system in a manner that demands resources in abnormal quantity,
frequency, or volume

• Performance Testing
– test the run-time performance of software within the context of an integrated
system

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 23

Object-Oriented Testing

• begins by evaluating the correctness and

consistency of the OOA and OOD models

• testing strategy changes

– the concept of the ‘unit’ broadens due to

encapsulation

– integration focuses on classes and their execution

across a ‘thread’ or in the context of a usage scenario

– validation uses conventional black box methods

• test case design draws on conventional

methods, but also encompasses special features
Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 24

Broadening the View of “Testing”

It can be argued that the review of OO analysis and

design models is especially useful because the

same semantic constructs (e.g., classes, attributes,

operations, messages) appear at the analysis,

design, and code level. Therefore, a problem in the

definition of class attributes that is uncovered

during analysis will circumvent side effects that

might occur if the problem were not discovered

until design or code (or even the next iteration of

analysis).

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

9

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 25

Testing the CRC Model

1. Revisit the CRC model and the object-relationship model.

2. Inspect the description of each CRC index card to determine if a
delegated responsibility is part of the collaborator’s definition.

3. Invert the connection to ensure that each collaborator that is
asked for service is receiving requests from a reasonable source.

4. Using the inverted connections examined in step 3, determine
whether other classes might be required or whether responsibilities
are properly grouped among the classes.

5. Determine whether widely requested responsibilities might be
combined into a single responsibility.

6. Steps 1 to 5 are applied iteratively to each class and through
each evolution of the OOA model.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 26

OOT Strategy

• class testing is the equivalent of unit testing

– operations within the class are tested

– the state behavior of the class is examined

• integration applied three different strategies

– thread-based testing—integrates the set of classes

required to respond to one input or event

– use-based testing—integrates the set of classes

required to respond to one use case

– cluster testing—integrates the set of classes required

to demonstrate one collaboration

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 27

Debugging:

A Diagnostic Process

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

10

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 28

The Debugging Process
test cases

results

Debugging

suspected
causes

identified
causes

corrections

regression
tests

new test
cases

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 29

Debugging Effort

time required
to diagnose the
symptom and
determine the
cause

time required
to correct the error
and conduct
regression tests

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 30

Symptoms & Causes

symptom

cause

symptom and cause may be
geographically separated

symptom may disappear when
another problem is fixed

cause may be due to a
combination of non-errors

cause may be due to a system
or compiler error

cause may be due to
assumptions that everyone
believes

symptom may be intermittent

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

11

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 31

Consequences of Bugs

damage

mild
annoying

disturbing

serious

extreme

catastrophic

infectious

Bug Type

Bug Categories: function-related bugs,

system-related bugs, data bugs, coding bugs,
design bugs, documentation bugs, standards
violations, etc.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 32

Debugging Techniques

brute force / testing

backtracking

induction

deduction

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

�����������	
� � ��������� ���� ���������	������ ��� �! "�#�$%&������ 33

Debugging: Final

Thoughts
Don't run off half-cocked, think about the
symptom you're seeing.

Use tools (e.g., dynamic debugger) to gain
more insight.

If at an impasse, get help from someone else.

Be absolutely sure to conduct regression tests
when you do "fix" the bug.

1.

2.

3.

4.

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s Approach, 6th Edition,

McGraw-Hill, 2005

