
1

Software Process Models II

Suradet Jitprapaikulsarn

Spiral model

Communication

& Planning

Modeling

Construction
Deployment 

delivery 

feedback

start

analysis 

design

code 

test

Risk analysis

Derived from Roger S. Pressman, Software Engineering: A Practitioner’s 

Approach, 6th Edition, McGraw-Hill, 2005

Spiral Model

The Good

• Risks are explicitly handled

• Realistic approach for the development of large-scale 
systems and software

• Lower overall risks

The Bad

• Demands and relies on expertise on risk assessment

• Difficult to convince customers that the evolutionary 
approach is controllable

• The process usually conflicts with the normal 
procurement model



2

Component-based software 

engineering (CBSE)

• Relies on a large base of reusable 

software components

Specification
Component

Analysis

Requirements

Modification

Design with

reuse

Development

& Integration
V & V

Evolution

Component-based software 

engineering (CBSE)

The Good

• Reduce the amount of software to be developed

• High reusability

• Fast delivery

The Bad

• Compromised requirements

• Performance, scalability, and upgrading could 
be problematic

• Lost controls of evolution

Computer-Aided Software 

Engineering (CASE)

• Software used to automate software 

process activities

• A lot of hypes

• Improves software quality and productivity



3

Computer-Aided Software 

Engineering (CASE)

Limitations

• Software engineering is a design activity 

based on creative thought

• Software engineering is a team activity

Rational Unified Process (RUP)

• Combining the best features of OO methods

• Developed by the three amigos: Grady Booch, 

Ivar Jacobson, and James Rumbaugh after they 

created a unified modeling language (UML)

• A hybrid process model

– Brings elements from all of the generic process 

models

– Supports iterations

– Illustrates good practice in specification and design

Rational Unified Process (RUP)

Three views in one

• Dynamic: phases over time

• Static: workflows

• Practice: good practices



4

Dynamic Perspective

Four phases

• Inception: establish reason for the system

• Elaboration: 
– Understand the problem

– Establish the system framework

– Develop the project plan

– Identify risks

• Construction: design, programming, and coding

• Transition: make the system work in real 
environment

Static perspective

6 core process workflows

• Business modeling

• Requirements

• Analysis and design

• Implementation

• Testing

• Deployment

3 core supporting workflows

• Configuration and change management

• Project management

• Environment

Practice Perspective

• Iterative software development

• Requirement management

• Component-bases architecture

• Graphical models

• Quality management

• Change control management

Adapted from Rational Software Corporation, Rational Unified Process: Best 

Practices for Software Development Teams, 1998



5

Other models

• Agile development

• Formal methods model

• Aspect-oriented software development 

(AOSD)

• Enterprise Unified Process (EUP)


