Principles of Artificial
Intelligence(305450)

Lecture 7: Introduction to
Learning



Learning

o [t is often hard to articulate the
knowledge we need to build Al
systems

e Often, we don't even know it!

e Frequently, we can arrange to build
systems that learn it themselves



What is Learning?

Memorizing something

Learning facts through observation and
exploration

Improving motor and/or cognitive skills through
practice

Organizing new knowledge into general, effective
representations

Quote from Herb Simon

— “Learning denotes changes in the system that are
adaptive in the sense that they enable the system
to do task or tasks drawn from the same
population more efficiently and more effectively the
next time”



Induction

-

Piece of bread 1 was nourishing when I ate it

Piece of bread 2 was nourishing when I ate it.

S,

Piece of bread 100 was nourishing when I ate it.

Therefore, all pieces of bread will be nourishing

if I eat them.

d




Why is Induction Okay?

ﬁ;as been argued that we hawe reason
to know the future will resemble the past,
because what was the future has
constantly become the past, and has
always been found to resemble the past,
so that we really have experience of the
future, namely of times which were
formerly future, which we may call past
/ futures. But such an argument really
begs the very question at issue. We have
experience of past futures, but not of

future futures, and the guestion is:
Wwill future futures resemble past futuy

e If asked why we believe the sun will rise tomorrow, we shall naturally
answer, '‘Because it has aIwags risen everyday’. We have a form of believe
that it will rise in the future, because it has risen in the past.




Kinds of Learning

e Supervised Learning: given a set of example
inBut/output pairs, find a rule that does a good
job of predicting the output associated with a
new input

e Clustering: given a set of examples, but no
labeling of them, group the examples into natural
clusters

e Reinforcement: an agent interacting with the
world makes observations, takes actions and is
rewarded or punished; it should learn to choose
actions in such a way as to obtain a lot of reward



Learning a Function

e Given a set of examples of input/output
pairs, find a function that does a good job
of expressing the relationship
— Pronunciation: function from letters to sounds

— Throw a ball: function from target locations to
joint torques

— Read handwritten characters: function from
collections of image pixels to letters

— Diagnose diseases: function from lab test
results to disease categories



Aspects of Function Learning

e memory
e averaging

e generalization



Example problem

e When to drive the car? Depends on:
—temperature
— expected precipitation
—day of the week

- whether she needs to shop on the way
home

— what she’s wearing



Memory

temp precip day shop clothes
80 none sat no casual walk
19 snow mon yes casual |drive
65 none tues no casual walk
temp precip day shop clothes

none sat no casual |[walk
19 snow __mon_yes  casual |drive
65 none tues no casual [walk
19 snow  mon yes  casual
temp precip day shop clothes

none sat no casual [walk
19 snow _mon vyes  casual |drive
"55 none tues no casual [walk
19 snow mon yes casual |drive




Averaging

e Dealing with noise in the data

temp precip day shop clothes
none sat no casual [walk
none sal no casual [walk
none sal no casual |drive
none sat no casual [drive
none sat no casual [walk
none sat no casual [walk
none sat no casual [walk

EEEEEEE




Averaging

e Dealing with noise in the data

temp precip daiy shop clothes

nomne sat no casual [walk
none sat no casual |walk
none sat no casual drive
none sat no casual drive
none sat no casual |[walk
none sat no casual [walk
none sat no casual |walk
none sat no casual

EEEEEEEE




Averaging

e Dealing with noise in the data

temp precip day shop clothes
none sa no casual |walk
none sat no casual [walk
none sat no casual [drive
none sat no casual |drive
none sat no casual |[walk
none sat no casual |walk
none sal no casual [walk
none sat no casual |[walk

CEEEEEEE!




Sensor noise

e Dealing with noise in the data

temp precip day shop clothes

80 none sat no casual |walk
B2 none sat no casual walk
78 none 83t no casual [walk
21 none sat no casual [drive
18 none sat no casual drive
(19 none sat no formal drive
(17 none  sal  no casual |drive




Sensor noise

e Dealing with noise in the data

temp precip day shop clothes

80 none sa no casual |[walk
82 none sat no casual walk
ki: none sat no casual [walk
21 none sat no casual |drive
18 none sat no casual drive
(18 none sat no formal drive
(17 none sat no casual [drive
20 none sat no casual drive




Generalization

e Dealing with previously unseen cases

temp precip day shop clothes

71 none fri yes formal drive
36 none sun  yes casual |walk
62 rain weds no casual walk
93 none mon no casual drive
55 none sal no formal drive
80 none satl no casual walk
19 SNow mon yes casual drive
65 none fues no casual walk




Generalization

e Dealing with previously unseen cases

temp precip day shop clothes

71 none fri yes  formal _ |drive
36 none sun  yes casual walk
62 rain weds no casual |walk
93 none mon no casual drive
55 none sal no formal drive
80 none sat no casual walk
19 SNOW mon  yes casual |drive
65 none tues no casual walk
58 rain mon  no casual




The Red and the Black




What's the right hypothesis




Now what'’s the right
hypothesis




Now what'’s the right
hypothesis




How about now?
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How about now? Answer 1




How about now? Answer 2




Variety of Learning Methods

e Learning methods differ in terms of:
- the form of the hypothesis

- the way the computer finds a
hypothesis given the data



Nearest Neighbor

e Remember all your data

e When someone asks a question,
— Find the nearest old data point,
— Return the answer associated with it
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Decision Trees

e Use all the data to build a tree of
questions with answer at leaves




Decision Trees

e Use all the data to build a tree of
questions with answer at leaves




Decision Trees

e Use all the data to build a tree of
questions with answer at leaves




Decision Trees

e Use all the data to build a tree of
questions with answer at leaves




Neural Networks

e Represent hypotheses as
combinations of simple computations

e Neurophysiologically plausible (sort
of)




Machine Learning Successes

e assessing loan credit check
e detecting credit fraud
e cataloging astronomical images

e detecting and diagnosing manufacturing
faults

e helping NBA coaches analyze performance
e personalizing news and web searches
e steering an autonomous car across the US



Supervised Learning

e Given data (training set)

m

D= {xi,ylz.,._xz,yz ML

:::xll,xi,..., xf, | output

input ) :
Classification: discrete Y
Regression: continuous Y

JF J

e Goal: find a hypothesis h in hypothesis class H
that does a good job of mapping x to y



Best Hypothesis

e Hypothesis should:
—do a good job of describing the data

— not too complex



Best Hypothesis

e Hypothesis should:

—do a good job of describing the data
eideally: h(x')) =y
e number of errors: E(h,D)

— not too complex
e measure: C(h)



Best Hypothesis

e Hypothesis should:
—do a good job of describing the data
eideally: h(x')) =y
e number of errors: E(h,D)

— not too complex

e measure: C(h)
Minimize E(h, D) + «C(h)

trade-off




Learning as Search

e How can we find the hypothesis with the
lowest value of Eh,D)+aCih) Search!

— For some hypothesis classes we can calculate
the optimal h directly! (linear separators)

— For others, do local search (gradient descent in
neural networks)

— For some structured hypothesis spaces,
construct one greedily



Propositional Logic

e Next sections use the language of
propositional logic to specify hypothesis in
the space of vectors of binary variables

— “A” is a variable that can take on values “true” and
“false” or 1 and O

— "A O B” means that variable A and B both have to be
true (1)

— “A [0 B” means that either variable A or variable B (or
both) have to be true (1)

— “=5A” means that variable A has to be false (0)



Learning Conjunctions

e Boolean features and output
e H = conjunctions of features
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Learning Conjunctions

e Boolean features and output
e H = conjunctions of features

h=FfAf
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Learning Conjunctions

e Boolean features and output
e H = conjunctions of features
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Learning Conjunctions

e Boolean features and output
e H = conjunctions of features

FolfalfalFelyY

ol1]/1]o]o h=Hfnf
1lol1]1]1

1]1[1/0/0 [em £ py-3
olof1]1]1 |¢um

ilojlol1lo Clh)=2
oli1]11]1 |¢um

e Set alpha so we're looking for smallest h
with O



Algorithm

Could search in hypothesis space using
tools we've already studied

Instead, be greedy!
Start with h = True
All errors are on negative examples

On each step, add conjunct that out most
new negatives (without excluding
positives)



Pseudo-code

= negative examples in D

h = True

Loop until N 1is empty



Pseudo-code

N = negative examples in D
h = True
Loop until N is ampty

For every feature j that does not have value 0 on

any positive axamples
n, i= number of examples in N
for which !'_JI = 0

J* = ] for which n, is maximized

h=h?"£f,

N (= N - examples in N for which f, = 0
If no such feature found, fail



Simulation

{x1,%3,x3}, h = True

s N=
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Simulation

{x1,%3,x5}, h = True
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Simulation

fi[fa|f5|fu]Y o N={x1,x3,x5}, h = True
oli1|t1]|o]|o i oD
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Simulation

Fo|fa|Fa|falY
0(11110|0
11011111
111({1|0(0
c|oj111|1
1|0({0]1|0
ol1j1111

o N={x1,x3,x5}, h = True
eny;=1,n, = 2

o N = {x°}, h = f,
en;=1,n,=0



Simulation
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o N={x1,%3,x5}, h = True
eny;=1,n,=2

oN = {x}, h = f,
*nz;=1n,=0
osN={}h=Ff~f



A Harder Problem

* We made one negative into a
positive
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A Harder Problem

* We made one negative into a
positive
* Only usable feature is f;
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e Can’t add any more features to h

- We're stuck
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A Harder Problem

Fulfa|fa[fa]Y
of1]1[o]0
1/0(1]1]1
1(1]1]0]1
00111
1lolo]1]o
Of1f1f1]1

=

* We made one negative into a
positive

» Only usable feature is f;

e Can’t add any more features to h

e We're stuck

* Best we can do when H is
conjunctions

e Live with error or change H



Disjunctive Normal Form

e Like the opposite conjunctive normal form
(but, for now, it’s like finding multiple
groups of positive examples within the
negative)

- (Aand Band C) or (D and E and F)

e Think of each disjunction as narrowing in
on a subset of the positive examples



Disjunctive Normal Form

e Like the opposite conjunctive normal form (but, for now,
it’s like finding multiple groups of positive examples within
the negative)

- (Aand Band C) or (D and E and F)

e Think of each disjunction as narrowing in on a subset of the
positive examples
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Disjunctive Normal Form

e Like the opposite conjunctive normal form (but, for now,
it’s like finding multiple groups of positive examples within
the negative)

- (Aand Band C) or (D and E and F)

e Think of each disjunction as narrowing in on a subset of the
positive examples
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Learning DNF

Let H be DNF expressions
C(h): number of mentions of features

Cl(Eal)v(ing))=4

Really hard to search this space, so be greedy
again!

A conjunction covers an example if all of the
features mentioned in the conjunction are true in
the example



Algorithm

P = set of all positive examples

h = False
Loop until P is empty
r = lrua

N = set of all negative examples
Loop until N is empty
If all features are in r, fail
Elzse, select a feature fj to add to
:Fr"‘fJ
H =N - axamples in n for which f]=ﬂl
h (= hwvr
Covered := examples in P covered by r
If Covered is empty, fail
Elsa P := P - Covaerad

aend



Choosing a Feature

IR ;|
Heuristic: v, max(n;,0.001)

n, = #not yet covered positive examples
covered by r Af;
n; = #notyet ruled out negative examples

covered by r Af

Choose feature with largest value of V|



Simulation

* h = False, P = {x2, x3, x%, %%}

Folfz|Fa(falY
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Simulation
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* h = False, P = {x2, x3, x%, %%}
or = True, N = {x!, x5}
ev,=2/1, v,=2/1, v;=4/1, v,=3/1
or = fy, N={x}
ov,=2/0, v,=2/1, v,=3/0
o r=Ff;~f,, N={}
. h=f3ﬂf4r P={K3}



Simulation
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* h = False, P = {x2, x3, x%, x5}
er = True, N = {x!, x5}
sv,=211, vu=2/1, v;=4f1, v,=3/1
or = f3 N={x1}
e v,=2/0, v,=2/1, v,=3/0
o r=f3"fq, N={3
e h=f,~f,, P={x3}
e r=True, N={x!, x°}
ev,=1/1, v,=1/1, vy=1/1, v,=0/1
o r=Ff;, N={x'}
e v,=1/0, v3=1/0, v,=0/1
o r=Ff, 75, N={}
o h=(F2F,)v(f,~F,), P={}



How well does it work?

e We'd like to know how well our h will
perform on new data (drawn from the
same distribution as the training data)

e Performance of hypothesis on the training
set is not indicative of its performance on
new data

e Save some data as a test set;

performance on h is a reasonable estimate
of performance on new data



Cross Validation

e To evaluate performance of an algorithm
as a whole (rather than a particular
hypothesis):

— Divide data into k subsets

— K different times
e Train on k-1 of the subsets
e Test on the held-out subset

— Return average test score over all k tests

e Useful for deciding which class of
algorithms to use on a particular data set



Noisy Data

e Have to accept non-zero on training
data

e Weaken DNF learning algorithm

- Don't require the hypothesis to cover all
nositive examples

— Don't require each rule to exclude all
negative examples




Pseudo Code: Noisy DNF Learning

P := the set of positive examples allow epsilon
h := False
np := epsilen * number of examples in P PEI"EEﬂtEgE eer
nn := apsilon * number of examples in N
Loop until P has fewer than np elements

r = Trua

N = the set of negative examples
Repeat until N has fewer than nn elements
Select a feature f_1 te add to r
£ oam g " fj
N := N - examples in N for which fj = 0
h :=hvwvr
P (= P - elements in P covered by r



Pseudo Code: Noisy DNF Learning

P = the set of positive examples allow epsilon
h = Falae
np := epailon * number of examples in P pEFEEI’ItEgE ek
nn := epsilon * number of examples in H
Loop until P has fewer than np elements or not progressing

r = True

N = the aet of negative examples

Repeat until N has fewer than nn elements or not progress
Select a feature fJ to add to ¢
ri:i=gr™" fj
H (= N - axamples in H for which fj = 0

h:=hve

P := P - elemants in P covered by r
Handle failure to

progress



Epsilon is our Delta

e Parameter epsilon is the percentage error
allowed

e The higher the epsilon, the simpler and
more error-prone the hypothesis

o If epsilon is small and the data is noisy,
the algorithm may fail to find an
acceptable hypothesis



Overfitting curve

200 input dimensions; function = f22~f55 v f99~f34

0.5
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% error 0.3
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0.2 0.4 0.6 0.8 1
epsilon

« In this example, the data has 10% noise, i.e. in 10 % of the
cases, we expect the output set to be the opposite of the one
specified by the target function

« X axis: epsilon ranging from 0 to 1

* y axis: percentage error on fresh data set



Overfitting curve

200 input dimensions; function = f22~f55 v f99~f34

0.5
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0.4 f—a\\
0.35
% error 0.3 \ \,l
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0 0.2 0.4 0.6 0.8 1

epsilon

 If we set epsilon close to 0, we run into the problem of overfitting

« In overfitting, we try to reduce error of hypothesis in the training set

« But we may have spent a lot of effort modeling noise in the data, and h
may perform poorly on the test set



Overfitting curve

200 input dimensions; function = f224f55 v f994f34

0.5
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I‘ 0.2 0.4 0.6 0.8 1
epsilon

high
variance

» In the overfitting cases, our algorithm will have high variance, i.e., when
we use the algorithm to find h, from another noisy data set generated
from the same target function, we will have different h

« If we turn epsilon up a bit, we generate simpler hypotheses that are not
so susceptible to variations in the data set and can get better
generalization performance



Overfitting curve

200 input dimensions; function = f22/f55 v f99/{34
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high
bias

« if epsilon is too high, will keep us from building hypothesis with sufficient

complexity

« we'd do poorly because we are unable to even represent the right answer



Hypothesis Complexity

200 input dimensions; function = f224f55 v f99~f34

35
30
25

C(h) i: }\ — 100D
10 I\
5
l:l T : : T :

0.2 0.4 0.6 0.8 1
epsilon
high
"H'EI'IEHCE

« when epsilon is 0, we are looking for a hypothesis with zero error on the
training set

« we are able to find one but it's very complex (31 literals)

« this is clearly a high variance situation; i.e., that hypothesis is completely
influenced by the particular training set and would change radically on a
newly drawn training set (and therefore high error on test set as well)



Hypothesis Complexity

200 input dimensions; function = f22f55 v f99~f34

35
30
25 \
C(h) 20 I\ — 100D
15 \
10
5
0 T T T 5 1
0.2 0.4 0.6 0. 1
epsilon high
high ‘ bias
variance

*When epsilon increase, we rapidly go down to a complexity of 1, which is
incapable of representing the target hypothesis



Domains

e Congressional voting: given a congressional
voting record (list of 1s and 0s), predict party

e Spam filtering: encode every message as a
vector of features, one per word; a feature is on
if that word occurs in the message; predict
whether or not the message is a spam

e Marketing: predict whether a person will buy beer
pased on previous purchases; encode buying
nabits with a feature for all products, set 1 if
Dreviously purchased




