
Problem Solving by Searching

305450 Lecture 2

Problem Solving by Searching

• Problem Solving: ���������	���
��������
������
����������

– Problem formulation: ������������������
������������
�� !"�������	�������#��$%�����&

– Possible Solutions: ���������!�(���������	"������	����
���#��)*+��%�

– Searching: ������	����������!�(���������	"������	� �
�����
"�#�,����������#��$%�����&�������

State Space Search

• ��������	�
�������������	����
– ��������	���	����	���������������� (Initial State) �!��������

��"�	��� (Goal State)

– ��#�$���	��#$������!���������

– ���������	�%&$���	��� (path) ����!���������'�� initial state

(��)� goal state ���*+�� states �+��,

– �������������������!���������$�'���	�(��%���$-������+���)�

Problem-solving

function Simple-Problem-Solving(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state ← Update-State(state, percept)

if seq is empty then

goal ← Formulate-Goal(state)

problem ← Formulate-Problem(state, goal)

seq ← Search(problem)

action ← Recommendation(seq, state)

seq ← Remainder(seq, state)

return action

Example: Romania

• On holiday in Romania: currently in Arad

• Flight leaves tomorrow from Bucharest

• Formulate goal:

– Be in Bucharest

• Formulate problem:

– States: various cities

– Actions: drive between cities

• Find solutions:

– Sequence of cities e.g., Arad, Fagaras, Bucharest

Example: Romania

Example: Romania

• On holiday in Romania: currently in Arad

• Flight leaves tomorrow from Bucharest

• Formulate goal:

– Be in Bucharest

• Formulate problem:

– States: various cities

– Actions: drive between cities

• Find solutions:

– Sequence of cities e.g., Arad, Fagaras, Bucharest

Problem Formulation

• A problem is defined by four items

• Initial state e.g., “at Arad”

• Successor function S(x) = set of action-state pairs e.g., S(Arad)

= {(Arad → Zerind, Sibiu), …}

• Goal test, can be

– Explicit, e.g., x = “at Bucharest”

– Implicit, e.g., NoDirt(x)

• Path cost, e.g., sum of distances, number of actions executed,

etc.

– C(x,a,y) is the step cost, assumed to be ≥ 0

• A solution is a sequence of actions leading from the initial

state to a goal state

Selecting a state space

• Real world is complex
– State space must be abstracted for problem solving

• (Abstract) state = set of real states
– E.g. “in Arad” represents a complex set of possible rest stops,

travel companions, condition of the road, weather, etc.

• (Abstract) action = complex combination of real actions
– E.g., “Arad → Zerind” ignores details, e.g., turn tseering wheel to

the left by three degree, etc.

• For guaranteed realizability, any real state “in Arad” must
get to some real state “in Zerind”

• (Abstract) solution = set of real paths that are solutions in
the real world

• Each abstract action should be “easier” than the original
problem!

Example: vacuum world state space graph

• states??

• actions??

• goal test??

• path cost??

Example: vacuum world state space graph

• states: dirt and robot locations (ignore dirt amount, etc)

• actions:

• goal test:

• path cost:

Example: vacuum world state space graph

• states: dirt and robot locations (ignore dirt amount, etc)

• actions: Left, Right, Suck, NoOp

• goal test:

• path cost:

Example: vacuum world state space graph

• states: dirt and robot locations (ignore dirt amount, etc)

• actions: Left, Right, Suck, NoOp

• goal test: no dirt

• path cost:

Example: vacuum world state space graph

• states: dirt and robot locations (ignore dirt amount, etc)

• actions: Left, Right, Suck, NoOp

• goal test: no dirt

• path cost: 1 per action (0 for NoOp)

Example: The 8-puzzle

• states??

• actions??

• goal test??

• path cost??

Example: The 8-puzzle

• states: locations of tiles

• actions:

• goal test:

• path cost:

Example: The 8-puzzle

• states: locations of tiles

• actions: move blank left, right, up, down

• goal test:

• path cost:

Example: The 8-puzzle

• states: locations of tiles

• actions: move blank left, right, up, down

• goal test: = goal state (given)

• path cost:

Example: The 8-puzzle

• states: locations of tiles

• actions: move blank left, right, up, down

• goal test: = goal state (given)

• path cost: 1 per move

