Informed search algorithms

305450 Lecture 3-1

Informed search

* ldea: use an heuristic function h(n) for each node
— estimate of "desirability"
— Expand most desirable unexpanded node

+ Terminology

— Heuristic — The word generally refers to a “rule of thumb”,
something that may be helpful in some cases but not always.
Generally held to be in contrast to “guaranteed” or “optimal”.

— Heuristic function (evaluation function) - In search terms, a
function that computes a value of a state (but does not depend on
any path to that state) that may be helpful in guiding the search.
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Informed search

* Implementation:
— Pick “best” (measured by heuristic value of state)
element of Q

— Add path extensions anywhere in Q (it may be more
efficient to keep the Q ordered in some way so as to
make it easier to find the “best” element, e.g.,
decreasing order of desireability)

» Examples:
— best-first search (greedy search)
— A" search
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Best-first search

+ Evaluation function f(n) = h(n) (heuristic)
» = estimate of cost from n to goal

* e.9., hg p(n) = straight-line distance from n
to Bucharest

» Best-first search expands the node that
appears to be closest to goal

-m'wmiﬂi:mmﬁunwiﬂitmm'ﬂm‘[ﬁumuﬁqﬂuﬁmmwm
- dudunseanides N ludailes Bucharest
- best first search @en expand node figuilauindfign




Best-first search

» Pick “best” (by heuristic value) element of Q. Add
path extensions anywhere in Q.

Q Visited
1 |os) s
2 [@AS)@BY ABS
3 |(ICAS)@BS)4DAS) |CDBAS
4 |3BS)4DAS) CD.BAS
5 [0GBS)[4DAS) GCDBAS Heuristic Values

A=2 c=A $=10
B=3 D=4 G=0

+ Added paths in blue; heuristic value of node’s state is in front
+ We show the paths in reversed order; the node’s state is the first entyy

Classes of Seach

Class Name Operation

Any Path Depth-First Systematic exploration of whole tree
Uninformed Breadth-First until a goal node is found

Any Path Best-First Uses heuristic measure of goodness
Informed of anode, e.g. estimated distance to goal
Optimal Uniform-Cost Uses path “length” measure.
Uninformed Finds “shortest’ path

-Breath first search, depth first search, best first search aglsifmeufinefudneuusn
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Simple Search Algorithm

Initialize Q with search node (S) as only entry; set Visited = (S)
If Q is empty, fail. Else, pick some partial path N from Q

If state(N) is a goal, return N {we've reached a goal)

(Otherwise) Remove N from Q

L

Find all the children of state(N) not in Visited and create all the one-step
extensions of N to each descendant.

Add all the extended paths to Q; add children of state(N) to Visited
7. Gotostep2.

o

Critical decision:
— Step 2: picking N from Q
— Step 6: adding extensions of N to Q

Simple Search Algorithm

Initialize Q with search node (S) as only entry;-setVisited="{$")
If Q is empty, fail. Else, pick some search node N from Q
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Find all the children of state(N) not in-Visited-and-create all the one-step
tensions of N to each di ant.

Add all the extended paths to Q; add-children-of-statefN)-to-Visited——
7. Gotostep2.

 Critical decision:
— Step 2: picking N from Q
— Step 6: adding extensions of N to Q

P
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If state(N) is a goal, return N {we’ve reached a goal) Don't use Visited
{Otherwise) Remove N from Q for Optimal Search




Why not a Visited list?

» For the any-path algorithms, the Visited list would not
cause us to fall to find a path when one existed, since
the path to a state did not matter.

« However, the Visited list in connection with optimal
searches can cause us to miss the best path.

The shortest path from Sto G is
TON] (SADG)
2 +  But, on extending (S), Aand D
oo © would be added to Visited list and
so (S A) would not be extended to
(SAD)
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Implementing Optimal Search Strategies

+ Uniform Cost:
— Pick best (measured by path length) element of Q
— Add path extensions anywhere in Q
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10




Uniform Cost

path instead of a heuristic value for the state

» Each link has a “length” or “cost” (which is always
greater than 0)

* We want “shortest” or “least cost” path

Total path cost:

(SAC) 4
(SBDG) 8
(SADC) 9

» Like best-first except that it uses “total length (cost)” of a
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Implementing Uniform Cost

+ Pick best (by path length) element of Q. Add path
extensions anywhere in Q

Q

©0s)

2AS)5BS)

(4CAS)(6DAS)(5BS)
GDAS)SBS)

(6DBS)(10GBS) EDAS)
BGDBS)(9CDBS) (10GBS)(EDAS)

BGDAS){SCDAS)(8GDBS)(@CDBS)
10GBS)

IR

=

« Added paths in blue; underlined paths are chosen for extension
« We show the paths in reversed order; the node’s state is the first enry

- smeeeaes UC without visited list to guarantee optimal solution
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Why not stop on first visiting a goal?

* When doing Uniform cost, it is not correct to stop the
search when the first path to a goal is generated, that is,
when a node whose state is a goal is added to Q.

* We must wait until such a path is pulled off the Q and
tested in step 3. It is only at this point that we are sure it
is the shortest path to a goal since there are no other
shortest path that remain unexpanded.

» This contrasts with the non-optimal searches where the
choice of where to test for a goal was a matter of
convenience and efficiency, not correctness.

* In the previous example, a path to G was generated at
step 5, but it was a different, shorter, path at step 7 that
we accepted.
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Uniform Cost

2
@‘2/@\‘5
s és)a s XL
1 @79 s @ (@

Total path cost
Order pulled off of Q {expanded)

UC enumerates paths in order of total path cost!
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Classes of Searches

Class Name Operation

Any Path Depth-First Systematic exploration of whole free
Uninformed Breadth-First until a goal node is found

Any Path Best-First Uses heuristic measure of goodness
Informed of anode, e.g. estimated distance to goal.
Optimal Uniform-Cost Uses path “length” measure.

Uninformed Finds “shortest’ path.

Optimal A* Uses path “length” measure and heuristic
Informed Finds “shortest’ path

- 8nsednazes Optimal search algorithm #e A*
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Goal Direction

« UC is really trying to identify the shortest path to every
state in the graph in order. It has no particular bias to
finding path to a goal early in the search.

« We can introduce such a bias by means of heuristic
function h(N), which is an estimate (h) of the distance
from a state to the goal.

» Instead of enumerating paths in order of just length (g),
enumerate paths in terms of f = estimated total path
length =g + h.

« An estimate that always underestimates the real path
length to the goal is called admissible.

» Use of an admissible estimate guarantees that UC will
still find the shortest path.

« UC with an admissible estimate is known as A* search 1
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Straight-line estimate

- natlszannuAn szezmeantiuslluanemelnedsrasmadumss
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Order in which UC looks at

/- states. Aand B are same
distance from start, so will
be looked at before any

ﬁm e
A g %y \B \goal

Assume states are points
in the Euclidean plane.

Why use estimate of goal distance?

- UC Winudndnyiuyntiusuiniuman tagliadladiazluie goal Gavsednindu
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Why use estimate of goal distance?

Order in which UC looks at
f states. Aand B are same
distance from start, so will
be looked at before any
longer paths. No “bias”

towards goal.

d
A
B goal
sta Order of examination using
dist. from start + estimate of
dist. to goal. Note “bias”
Assume states are points toward the goal; points away
in the Euclidean plane. from goal look worse.

- witisiansanszazieann goal dousnaylfelaemeléiaiu dde idea of A* search
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A*

* Pick “best” (by path length + heuristic) element of Q. Add
path extensions anywhere in Q.

Q

©08)

“AS) 8BS
(5CAS)(TDAS)BBS)
(7DAS)@8BS)
BGDASI0CDAS)@BS)

IR

Heuristic Values
A=2 c= $=0
B=3 D= G=0

« Added paths in blue; underlined paths are chosen for extension
« We show the paths in reversed order; the node’s state is the first entry
20
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Not all heuristics are admissible

Given the link lengths in the figure, is the table
of heuristic values that we used in our earlier ®
best-first example an admissible heuristic?

2
D,
Nol 1 5
Ais ok ©
Bis ok

<,
3

Cis ok Heuristic Values
D is too hig, needs to be <=2 A=2 c= $=10
S is too hig, can always use 0 for start B=3 D=4 G=0
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States vs Paths

22
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Dynamic Programming Optimality Principle
(and the Expanded list)

Given that path length is additive, the shortest path from S to G via a state X is
made up of the shortest path from S to X and the shortest path from X to G.
This is the "dynamic programming optimality principle".

z
W)
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Dynamic Programming Optimality Principle
(and the Expanded list)

Given that path length is additive, the shortest path from S to G via a state Xis
made up of the shortest path from S to X and the shortest path from X to G.
This is the "dynamic programming optimality principle".

This means that we only need to keep the single best path from S to any state
X; if we find a new path to a state already in Q, discard the longer one.

Note that the first time UC pulls a search node off of Q whose state is X, this
path is the shortest path from S to X. This follows from the fact that UC
expands nodes in order of actual path length.

So, once we expand one path to state X, we don’t need to consider (extend)
any other paths to X. We can keep a list of these states, call it Expanded. If
the state of the search node we pull off of Q is in the Expanded list, we discard
the node. When we use the Expanded list this way, we call it “strict”.

Note that UC without this is still comect, but inefficient for searching graphs.
24
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Simple Search Algorithm
(Uniform Cost)

Initialize Q with search node (S) as only entry;

If Q is empty, fail. Else, pick least cost search node N from Q
If state(N) is a goal, return N (we’ve reached the goal)
(Otherwise) Remove N from Q.

R A

to each descendant.
7. Add all the extended paths to Q;
8. Gotostep2.

Find all the children of state(N) and create all the one-step extensions of N

25
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Simple Search Algorithm

(Uniform Cost + strict Expanded list)

Initialize Q with search node (S) as only entry; set Expanded = ()

If Q is empty, fail. Else, pick least cost search node N from Q

If state(N) is a goal, return N (we've reached the goal)

{Otherwise) Remove N from Q.

if state(N) in Expanded, go to step 2, otherwise add state(N) to Expanded.

6. Find all the children of state(N) (Not in Expanded) and create all the one-
step extensions of N to each descendant.

E i

(2

7. Add all the extended paths to Q; if descendant state already in Q, keep only
shorter path to the state in Q.

8. Gotostep2.

26
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Uniform Cost (with strict Expanded list)

« Pick best (by path length) element of Q. Add
extensions anywhere to Q.

(EDBS)(10GBS)EDAS)  |SACB
|86 D AS)locHAS) 1068S) [sACBD

3
Q Expanded O
1|09
2 |2AS)EBS) s
3 |4CAS)EDAS)(5BS) SA
4 |GDAS)5BS) SAC
5
6
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(6 D B S) — select shorter - step 7
(9 CDAS)—ignore as C is already in the expanded list — step 5
(10 G B S) —select shorteri.e., 8GDAS)—step7
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A* (without strict Expanded list)

Let g{N) be the path cost of n, where n is a search tree node, i.e. a partial path.
Let h{N) be h(state{N)), the heuristic estimate of the remaining path length to the
goal from state(N).

Let f(N) = g(N) + h{state(N)) be the total estimated path cost of a node, i.e. the
estimate of a path to a goal that starts with the path given by N.

A picks the node with lowest f value to expand

A* (without expanded list) and with admissible heuristic is guaranteed to find
optimal paths - those with smallest path cost.

.
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A* and the strict Expanded list

« The strict Expanded list (also known as a Closed list) is commonly used in
implementations of A* but, to guarantee finding optimal paths, this
implementation requires a stronger condition for a heuristic than simply
being an underestimate.

Here’s a counterexample: The heuristic values listed below are all
underestimates but A" using an Expanded list will not find the optimal path.
The misleading estimate at B throws the algorithm off, C is expanded before
the optimal path to it is found.

Q Expanded
1108)
2|(3BS) (101 AS) S
3|{94CBS) (101 AS) B,S
4| (101 AS){104GCBS)|C,B,S Heuristic Values
5((104GCB s)l AC,B,S A=100 C=90 S=0
B=1 G=0

Added paths in blue; underlined paths are chosen for extension.

We show the paths in reversed order; the node's state is the first entry.
29
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Consistency

+ To enable implementing A* using the strict Expanded list, H needs to satisfy
the following consistency (also known as monotonicity) conditions.
+ h{s}) =0,if n; is a goal
* his;)- his)) - cls;s;) , for n; a child of ny
« That s, the heuristic cost in moving from one entry to the next cannot
decrease by more than the arc cost between the states. This is a kind of
triangle inequality. This condition is a highly desirable property of a heuristic
function and often simply assumed (more on this later).

30
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Consistency Violation

+ Asimple example of a violation of
consistency.
h(s;) - h(sj) 5 C(si‘sj)
+ In example,100-10 > 10
+ If you believe goal is 100 units from
n;, then moving 10 units to n;
should not bring you to a distance h(s)=10

of 10 units from the goal. "i\
¢{s;,5;)=10 goal

h(s;)=100

31
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A* and the strict Expanded list

« Note that consistency of the heuristic is only necessary for optimality
when we want to discard paths from consideration, for example,
because a state has already been expanded. Otherwise, plain A*
without using an expanded only requires only that the heuristic be
admissible to guarantee optimality.

« This illustrates that A* without an Expanded list has no trouble
coping with the example we saw earlier that showed the pitfalls of
using a strict Expanded list. This heuristic is not consistent but it is
an underestimate and that is all that is needed for A* without an
Expanded list to guarantee optimality.

« The extension of A* to use a strict expanded list is just like the
extension to uniform-cost search. In fact, it is the identical algorithm
except that it uses f values instead of g values. But, we stress that
for this algorithm to guarantee finding optimal paths, the heuristic
must be consistent.

32
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Q Expanded
1/ @os)
2| (90BS) (101AS) s
3| (101 AS) (104CBS) AS
4| (102CAS) (104-€B5) [CAS
[s[ao2ccas)] GCAS

A* and the strict Expanded list

If we modify the heuristic in the example we have been considering
so that it is consistent, as we have done here by increasing the value of h(B),
then A* (even when using a strict Expanded list) will work.

Heuristic Values
A=100 C=100 S$=90
B=88 G=0
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h(S) - h(B) < c(S,B)
90— h(B) <2

90- 2 < h(B)

88 < h(B)

-Tu step # 41ifeann C hildedlu strict expanded list msiazifus expand Ato C

- uazilosnn (102 C A S) fish cost veendr (104 C B S) swerdmnneenviniy iiummsdaiiiiddoonds
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Dealing with inconsistent heuristic

What can we do if we have an inconsistent heuristic but we still want optimal
paths?
Modify A* so that it detects and corrects when inconsistency has led us astray:
Assume we are adding node, to Q and node, is present in Expanded list with
nodey.state = node,.state.
Strict -
+ do not add node, to Q
+ Non-Strict Expanded list -
+ If node.path_length < node,.path_length, then
- Delete node, from Expanded list
- Add node to Q

34
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